Сравнительный анализ жесткости очаговых образований щитовидной железы с помощью точечной эластографии сдвиговой волной

А.Н. Катрич, А.В. Охотина, К.А. Шамахян, Н.С. Рябин

ГБУЗ "Научно-исследовательский институт — Краевая клиническая больница № 1 имени профессора С.В. Очаповского" Министерства здравоохранения Краснодарского края, г. Краснодар

Проведен ретроспективный анализ результатов ультразвукового исследования 232 пациентов в возрасте от 22 до 80 лет. Первую (контрольную) группу составили 30 пациентов. Вторую группу составили 202 пациента с очаговыми изменениями в щитовидной железе. Ультразвуковое исследование проведено на сканере Acuson S2000 (Siemens, Германия) с технологией точечной эластографии сдвиговой волной (ARFI-эластографии). По результатам эластографии выполнялись тонкоигольная аспирационная биопсия и цитологическое исследование материала. Согласно морфологическим результатам были сформированы следующие подгруппы: узловой (коллоидный) зоб – 80 пациентов (80 узлов), узловой (клеточный) зоб – 68 (68 узлов), аутоиммунный тиреои- $\partial um - 42$ (42 узла), рак щитовидной железы – 12 (12 узлов). Значения скорости сдвиговой волны у пациентов контрольной группы (медиана – 1,56 m/c, интерквартильный размах -1,28-1,72 м/c) достоверно различаются с показателями подгрупп рака щитовидной железы, узлового зоба и аутоиммунного тиреоидита (P < 0.05). Значения скорости сдвиговой волны у пациентов с раком щитовидной железы (2,51 м/c, 2,47-2,62 м/c) достоверно различаются с показателями подгрупп узлового зоба и аутоиммунного тиреоидита (P < 0.05). Значения скорости сдвиговой волны у пациентов с узловым (коллоидным) зобом (1,80 м/c, 1,52-2,10 м/c), узловым (клеточным) зобом (1,70 м/c,1,46-2,04 м/c) и аутоиммунным тиреоидитом (1,90 м/c, 1,66-2,10 м/c) достоверно не различаются. Чувствительность точечной эластографии сдвиговой волной в диагностике рака щитовидной железы (скорость сдвиговой волны >2,45 м/c)

А.Н. Катрич — к.м.н., заведующий отделением ультразвуковой диагностики ГБУЗ "Научно-исследовательский институт — Краевая клиническая больница \mathbb{N} 1 имени профессора С.В. Очаповского" Министерства здравоохранения Краснодарского края, г. Краснодар. А.В. Охотина — врач ультразвуковой диагностики отделения ультразвуковой диагностики ГБУЗ "Научно-исследовательский институт — Краевая клиническая больница \mathbb{N} 1 имени профессора С.В. Очаповского" Министерства здравоохранения Краснодарского края, г. Краснодар. К.А. Шамахян — врач ультразвуковой диагностики отделения ультразвуковой диагностики ГБУЗ "Научно-исследовательский институт — Краевая клиническая больница \mathbb{N} 1 имени профессора С.В. Очаповского" Министерства здравоохранения Краснодарского края, г. Краснодар. Н.С. Рябин — врач-эндоскопист эндоскопического отделения \mathbb{N} 2 ГБУЗ "Научно-исследовательский институт — Краевая клиническая больница \mathbb{N} 1 имени профессора С.В. Очаповского" Министерства здравоохранения Краснодарского края, г. Краснодар.

Контактная информация: 350086 г. Краснодар, ул. 1 Мая, д. 167, ГБУЗ "НИИ — ККБ № 1", отделение ультразвуковой диагностики. Катрич Алексей Николаевич. Тел.: +7 (918) 492-09-46. E-mail: katrich-a1@yandex.ru 83,3%, специфичность — 95,2%, площадь под кривой — 0,931.

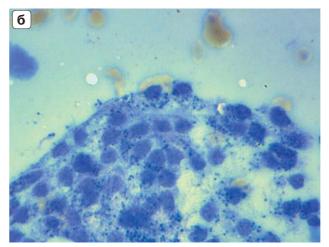
Ключевые слова: ультразвуковое исследование щитовидной железы, ультразвуковая эластография, точечная эластография сдвиговой волной, рак щитовидной железы, доброкачественные образования щитовидной железы.

ВВЕДЕНИЕ

Заболевания щитовидной железы встречаются у 8–20% населения во всем мире, в эндемических районах этот показатель свыше 50% [1, 2]. В перечне этих заболеваний значительное место занимает очаговая патология [3]. Злокачественные опухоли щитовидной железы составляют 1–3% в структуре онкологической патологии. В 2004 г. заболеваемость раком щитовидной железы составила 1,1 на 100 тыс. мужского и 3,8 на 100 тыс. женского населения. Исследования последних лет свидетельствуют о росте частоты различных заболеваний щитовидной железы практически во всех странах [4].

Очаговые образования щитовидной железы обнаруживаются у 30–50% людей в мире, большая часть представлена узловым пролиферирующим коллоидным зобом [5–7]. По данным различных авторов, до 5–10% очаговых образований щитовидной железы представлены различными видами карцином, 90% из которых относятся к высокодифференцированному фолликулярному ракущитовидной железы[8,9]. Необходимо отметить, что увеличение числа больных с очаговой патологией связано не только с истинным ростом заболеваемости, но и с совершенствованием методов диагностики [10].

За последние десятилетия ультразвуковое исследование стало незаменимым инструментом для оценки узловых образований щитовидной железы [11]. Однако этот метод (традиционная комбинация В-режим + цветокодированный допплерографический режим) не в состоянии оценить с высокой точностью характер этих поражений [4] (рис. 1 и 2).


Новым бурно развивающимся направлением в ультразвуковой диагностике явля-

ется эластография — метод, позволяющий провести качественную и количественную оценку жесткости ткани. Эластография, будучи методом оценки жесткости тканей, дает информацию об их состоянии в ответ на приложенное давление. В мягких тканях приложенное давление вызывает большее сжатие, в то время как жесткие ткани сжимаются меньше, то есть метод дает возможность изучить механические свойства тканей [12].

Ультразвуковая эластография представлена двумя основными методиками: компрессионная эластография и эластография сдвиговой волной [13]. Одним из видов эластографии сдвиговой волной является точечная эластография сдвиговой волной. Она представлена такими технологиями, как ARFI-эластография (acoustic radiation force impulse, Siemens, Германия) и ElastPQ (elastography point quantification, Philips, Нидерланды), и основана на формировании сдвиговых волн с помощью создания давления мощным ультразвуковым импульсом. Передача продольного акустического импульса приводит к смещению ткани, в результате чего от области возбуждения распространяются поперечные (сдвиговые) волны. Цифровые данные представлены в виде значений скорости сдвиговых волн (M/c), которые легко могут быть переведены в значения модуля Юнга (кПа) [14]. Согласно литературным данным, эластография сдвиговой волной характеризуется рядом преимуществ: меньшая операторзависимость, хорошая воспроизводимость и возможность количественной оценки жесткости исследуемой ткани [15, 16].

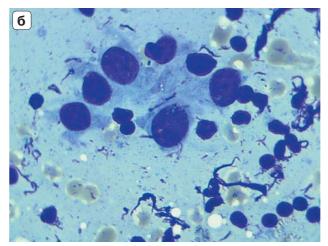

При использовании ультразвуковой эластографии показатели жесткости нормальной паренхимы и злокачественных опухолей щитовидной железы значительно разнятся [17-19]. Используя ARFI-эластографию, I. Sporea et al. [20] показали, что нормальная скорость сдвиговой волны в здоровой щитовидной железе -2.07 ± 0.44 м/с, что достоверно ниже при сравнении с доброкачественными процессами. M. Friedrich-Rust et al. [21] сообщили, что медиана средней скорости сдвиговой волны в нормальной тиреоидной ткани - 1,98 м/с (1,20-3,63 м/c), при этом достоверная разница с доброкачественными узловыми образованиями отсутствует (медиана -

Рис. 1. Несоответствие ультразвуковой картины и цитологического заключения при коллоидном зобе. а - ультразвуковая картина щитовидной железы в В-режиме может соответствовать аутоиммунному тиреоидиту. б - микропрепарат. Цитологическое заключение: коллоидный зоб (окраска гематоксилином и эозином, $\times 1\,000$).

Рис. 2. Несоответствие ультразвуковой картины и цитологического заключения при аутоиммунном тиреоидите. а — ультразвуковая картина очагового гиперэхогенного образования в правой доле щитовидной железы в В-режиме может соответствовать узловому зобу. δ — микропрепарат. Цитологическое заключение: аутоиммунный тиреоидит (окраска гематоксилином и эозином, $\times 1000$).

 $2,02\,\mathrm{m/c}$, разброс $-0,92-3,97\,\mathrm{m/c}$). Однако скорость сдвиговой волны в злокачественных узлах (медиана $-4,30\,\mathrm{m/c}$, разброс $-2,40-4,50\,\mathrm{m/c}$) достоверно различается при сравнении с нормальной тканью и доброкачественными процессами [21]. Полученные данные требуют продолжения исследований в этом направлении.

Целью нашей работы является сравнительный анализ жесткости ткани при различных морфологических формах очаговых образований щитовидной железы с помощью точечной эластографии сдвиговой волной (ARFI-эластографии).

МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ

Работа основана на анализе результатов комплексной диагностики 232 пациентов в возрасте от 22 до 80 лет, проходивших обследование и лечение в условиях ГБУЗ "Научно-исследовательский институт — Краевая клиническая больница № 1 имени профессора С.В. Очаповского "Министерства здравоохранения Краснодарского края (г. Краснодар) в 2014 г. Первую (контрольную) группу составили 30 пациентов: мужчин было 30,0% (9 человек), женщин — 70,0% (21 человек) с отсутствием в анамне-

зе заболеваний щитовидной железы, неизмененной ультразвуковой картиной паренхимы и эутиреоидным гормональным статусом. Во вторую группу вошли 202 пациента с очаговыми изменениями в щитовидной железе. Мужчин было 7,4% (15 человек), женщин – 92,6% (187 человек).

Комплекс ультразвуковой диагностики включал ультразвуковое исследование в режиме точечной эластографии сдвиговой волной. Исследование проводилось на аппарате Acuson S2000 (Siemens, Германия) с помощью линейного датчика, работающего в диапазоне частот от 4 до 9 МГц. Исследование выполнялось в стандартном положении пациента лежа на спине с запрокинутой головой и валиком под плечевым поясом.

Количественная оценка жесткости ткани проводилась в зоне интереса путем наложения зоны опроса на традиционное серошкальное ультразвуковое изображение. Датчик располагали перпендикулярно поверхности тела с минимальным мануальным давлением. Измерения проводили на фоне спокойного дыхания и отсутствия глотательных движений. После фиксации каждого показателя несколько изменяли положение зоны опроса, не выходя за пределы изучаемой анатомической области или образования, избегая попадания зоны опроса на жидкостные структуры в случае исследования кистозно-солидных образований. Данные ARFI-эластографии считали достоверными и заносили в программу для дальнейшей статистической обработки, если интерквартильный размах (то есть разница между 25-м и 75-м процентилями) показателей скорости сдвиговой волны не превышал 30% от среднего значения скорости сдвиговой волны. В каждом случае выполнялась серия из 5 успешных измерений с автоматическим определением значения скорости сдвиговой волны (м/с).

Всем пациентам второй группы непосредственно после выполнения эластометрии выполнялась тонкоигольная аспирационная биопсия очаговых образований под контролем ультразвукового исследования (игла 21G) с последующим цитологическим исследованием полученного материала (3 стекла). В случае многоочагового характера поражения критерием выбора узла для проведения цитологической верификации были данные В-режима и результаты эла-

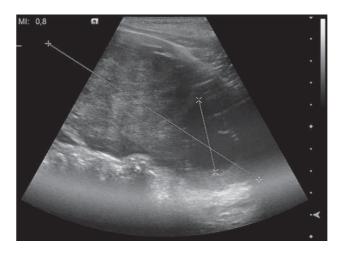
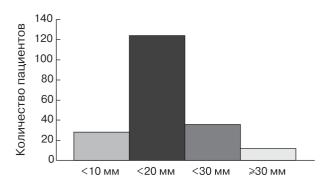
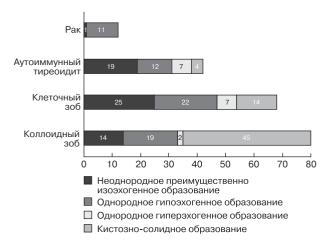


Рис. 3. Ультразвуковая картина субтотальной опухоли (рак?) левой доли щитовидной железы (максимальный размер -114 мм) с полостью распада в нижнем полюсе (34 мм).


стографии (максимальные показатели скорости сдвиговой волны). По результатам морфологического исследования были сформированы следующие подгруппы: узловой (коллоидный) зоб – 80 пациентов (80 узлов), узловой (клеточный) зоб – 68 (68 узлов), аутоиммунный тиреоидит – 42 (42 узла), рак щитовидной железы – 12 (12 узлов).

Статистическая обработка результатов проводилась с помощью пакета прикладных программ Statistica 6.0 с использованием методов непараметрической статистики. Качественные переменные описывали абсолютными и относительными частотами, количественные переменные представлены в виде медианы, интерквартильного размаха, минимального - максимального значений. Сравнение количественных признаков в независимых группах проводили по методу Манна-Уитни, качественных с использованием критерия χ^2 . Результаты считали достоверными при P < 0.05. ROCанализ проводили при помощи статистического пакета SPSS 17.0 для Windows.


РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

Во второй группе исследованных нами пациентов размеры очаговых образований колебались от 7 до 114 мм (рис. 3), при этом подавляющее количество исследуемых образований было размером до 20 мм (рис. 4).

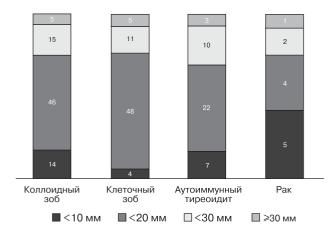

Нами была проанализирована структура и эхогенность выявленных образований

Рис. 4. Распределение очаговых образований щитовидной железы по размеру.

Рис. 5. Структура и эхогенность различных морфологических форм очаговых образований шитовилной железы.

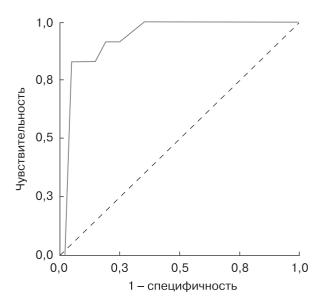
Рис. 6. Распределение очаговых образований щитовидной железы различных морфологических форм по размеру.

Таблица 1. Показатели точечной эластографии сдвиговой волной обследованных пациентов

Группы и подгруппы	Скорость сдвиговой волны, м/с
Контрольная группа (n = 30)	1,56# 1,28-1,72 1,10-1,88
Коллоидный зоб (n = 80)	1,80*# $1,52-2,10$ $0,90-2,82$
Клеточный зоб (n = 68)	$1,70^{*\#} \ 1,46-2,04 \ 0,88-2,98$
Аутоиммунный тиреоидит $(n=42)$	$^{1,90*}_{1,66-2,10}_{1,26-2,50}$
Рак (n = 12)	$2,51* \ 2,47-2,62 \ 2,02-2,72$
Объединенная подгруппа доброкачественных заболеваний (коллоидный зоб, аутоиммунный тиреоидит, клеточный зоб) $(n=190)$	1,80*# 1,52-2,10 0,88-2,98

Примечание: значения скорости сдвиговой волны представлены в виде медианы (первая строка ячейки), 25-75-го процентилей (вторая строка ячейки), минимального — максимального значений (третья строка ячейки). *— достоверность различий при сравнении с контрольной группой при P < 0.05, #— при сравнении с подгруппой рака щитовидной железы.

(рис. 5). При использовании критерия χ^2 получена достоверность различий серошкальной картины образований различных подгрупп.


Необходимо отметить, что при раке щитовидной железы подавляющее количество образований были пониженной эхогенности (11 из 12-91,7%), что достоверно отличается при сравнении с доброкачественными процессами (53 из 190-27,9%). Это соотносится с литературными данными [17]. В структуре злокачественных образований микрокальцинаты определялись в 4 (33,3%) случаях. 5 (41,7%) диагностированных раков щитовидной железы имели размер менее 10 мм (рис. 6).

В табл. 1 представлены значения скорости сдвиговой волны, полученные в щитовидной железе или ее образованиях у обследованных пациентов. Показатели, полученные при проведении точечной эластографии сдвиговой волной в различных подгруппах

патологии (в том числе в объединенной группе доброкачественных заболеваний), достоверно отличались от показателей, полученных в контрольной группе. Также получены достоверные различия при сравнении подгрупп доброкачественной патологии с раком щитовидной железы. Достоверные различия при сравнении подгрупп доброкачественной патологии не получены.

С целью определения порогового значения жесткости, при котором диагностическая эффективность предлагаемого метода в верификации рака щитовидной железы будет наиболее достоверной, был проведен *ROC*-анализ данных точечной эластографии сдвиговой волной у больных с узловыми образованиями щитовидной железы (рис. 7).

Площадь под кривой (AUC) составила 0.931 (95%-й доверительный интервал – 0.879-0.983, m - 0.027), что рассматривается как показатель наивысшей информативности диагностического метода [22]. Если исходить из максимальной чувствительности и специфичности теста (тах (Sensitivity + Specificity) = 1,785), то пороговым значением следует признать 2,45. При этом чувствительность метода составила 83,3%, специфичность -95,2%. Если исходить из требований баланса чувствительности и специфичности (min (Sensitivity – Specificity) = 0.018), пороговым значением будет считаться 2,25 с чувствительностью 83,3% и специфичностью 85,1%. В данном случае следует исходить из требований наибольшей специфичности теста: при 95,2%-й специфичности чувствительность составит 83,3%, пороговое значение скорости сдвиговой волны будет равно 2,45 м/с. В табл. 2 приведена сравнительная информация по пороговым значениям скорости сдвиговой волны, полученным для диагностики рака щитовидной железы различными авторами.

Рис. 7. *ROC*-кривая при анализе результатов точечной эластографии сдвиговой волной у пациентов с узловыми образованиями щитовидной железы.

Большие интервалы полученных показателей скорости сдвиговой волны в подгруппах коллоидного и клеточного зоба мы связываем с размерами и полиморфной структурой исследуемых образований, а также высоким внутритканевым давлением на фоне множественных очаговых образований в одной доле (рис. 8).

Также необходимо отметить, что получить корректные результаты при глубине исследования более 4 см невозможно, что связано с ограничениями, установленными производителем оборудования.

При исследовании кистозно-солидных образований необходимо принимать во внимание тот факт, что жидкость не сжимается и сдвиговые волны в ней формироваться не могут. В случаях, когда контрольный объем установлен на границу раздела сред (жидкость/ткань) или на кистозный компо-

Таблица 2. Информативность точечной эластографии сдвиговой волной в диагностике рака щитовидной железы

Авторы публикаций	Пороговые значения скорости сдвиговой волны	Чувствитель- ность,%	Специфич- ность,%	Площадь под кривой
J. Bojunga et al. [18]	≥2,57 m/c	57	85	0,69
Y.F. Zhang et al. [23]	$>$ 2,87 ${ m m/c}$	75,0	82,2	0,861
Результаты данной работы	$>$ 2,45 ${ m m/c}$	83,3	95,2	0,931

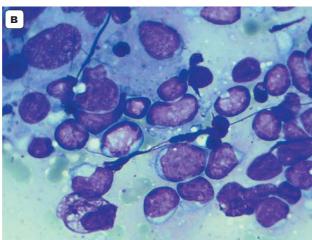
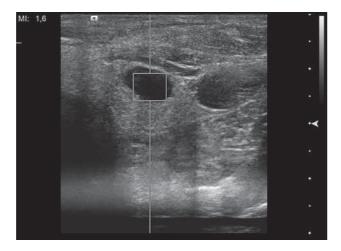
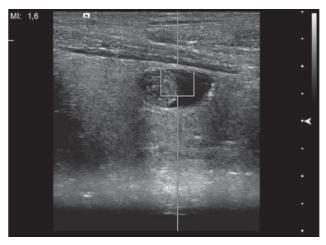




Рис. 8. Ложно-положительный результат при аутоиммунном тиреоидите. а — множественные очаговые образования левой доли щитовидной железы в В-режиме. б — высокая скорость сдвиговой волны (2,58 м/с). в — микропрепарат. Цитологическое заключение: аутоиммунный тиреоидит (окраска гематоксилином и эозином, $\times 1000$).

Рис. 9. Примеры некорректных измерений при точечной эластографии сдвиговой волной. Пояснение в тексте.

нент, полученные данные некорректны (рис. 9). Поэтому мы проводили измерения только в солидном компоненте кистозно-солидных образований. То же самое касается ситуаций с микрокальцинатами, участки с микрокальцинатами при возможности

нужно исключать из области измерения скорости сдвиговой волны. Так, Y.F. Zhang et al. [23] не рекомендуют проводить измерения в участках с кистами и микрокальцинатами при использовании *ARFI*-эластографии.

выводы

- 1. Точечная эластография сдвиговой волной является высоко информативной ультразвуковой методикой в диагностике рака щитовидной железы, что подтверждает справедливость комплексного подхода при ультразвуковой диагностике рака щитовидной железы.
- 2. Значения скорости сдвиговой волны у пациентов контрольной группы (медиана $1,56\,$ м/с, интерквартильный размах $1,28-1,72\,$ м/с) достоверно различаются с показателями подгрупп рака щитовидной железы, коллоидного зоба, клеточного зоба и аутоиммунного тиреоидита (P < 0,05).
- 3. Значения скорости сдвиговой волны у пациентов с раком щитовидной железы $(2,51~\text{m/c},\,2,47-2,62~\text{m/c})$ достоверно различаются с показателями подгрупп коллоидного зоба, клеточного зоба и аутоиммунного тиреоидита (P < 0,05).
- 4. Значения скорости сдвиговой волны у пациентов с коллоидным зобом (1,80 м/с, 1,52-2,10 м/с), клеточным зобом (1,70 м/с, 1,46-2,04 м/с) и аутоиммунным тиреоидитом (1,90 м/с, 1,66-2,10 м/с) достоверно не различаются.
- 5. Чувствительность точечной эластографии сдвиговой волной в диагностике рака щитовидной железы (скорость сдвиговой волны $>2,45~\rm m/c)$ 83,3%, специфичность 95,2%, площадь под кривой 0,931.
- 6. Необходимо продолжение накопления опыта для объективизации показаний к тонкоигольной аспирационной пункционной биопсии узлов щитовидной железы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Валдина Е.А. Заболевания щитовидной железы. СПб.: Питер, 2001. 397 с.
- Дедов И.И., Мельниченко Г.А., Герасимов Г.А. Клинические рекомендации Российской ассоциации эндокринологов по диагностике и лечению аутоиммунного тиреоидита (АИТ) у взрослых // Проблемы эндокринологии. 2003. № 6. С. 50-51.
- 3. Дедов И.И., Кузнецов Н.С., Мельниченко Г.А. и др. Эндокринная хирургия: "узкая" специальность или насущная проблема // Клиническая и экспериментальная тиреоидология. 2008. Т. 4. № 1. С. 8–11.
- Сенча А.Н. Методы лучевой визуализации в диагностике и лечении заболеваний щитовидной железы: Автореф. дис. ... докт. мед. наук. М., 2008. 41 с.
- 5. Pacini F., Schlumberger M., Dralle H. et al. European consensus for the management of patients

- with differentiated thyroid carcinoma of the follicular epithelium // Eur. J. Endocrinol. 2006. V. 154. No. 6. P. 787-803.
- Эпштейн Е.В., Матящук С.И. Диагностическая точность эхографии в оценке характера новообразований щитовидной железы // Журнал Академии медицинских наук Украины. Т. 10. № 1. С. 104-119.
- Gharib H., Papini E., Valcavi R. et al. American Association of Clinical Endocrinologists and Associazione Medici Endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules // Endocr. Pract. 2006. V. 12. No. 1. P. 63-102.
- Ванушко В.Э., Фадеев В.В. Узловой зоб (клиническая лекция) // Эндокринная хирургия. 2012.
 № 3. С. 8-11.
- Lyshchik A., Higashi T., Asato R. et al. Thyroid gland tumor diagnosis at US elastography / Radiology. 2005. V. 237. No. 1. P. 202-211.
- 10. Беляков И.Е. Клинико-морфологические особенности узловых образований щитовидной железы и тактические подходы к их оперативному лечению: Дис. ... канд. мед. наук. Ярославль, 2006. 155 с.
- 11. Гурсой А., Эрдоган М.Ф. УЗИ узловых образований щитовидной железы: современный подход // Thyroid International. 2012. № 3. С. 3–15. Режим доступа: // http://thyronet.rusmedserv.com/files/219/2012_03.pdf, свободный. Загл. с экрана. 20.12.2015.
- Itoh A., Ueno E., Tohno E. et al. Breast disease: clinical application of US elastography for diagnosis // Radiology. 2006. V. 239. No. 2. P. 341–350.
- 13. Зыкин Б.И., Постнова Н.А., Медведев М.Е. Эластография: анатомия метода // Лучевая диагностика, лучевая терапия. 2012. №№ 2-3. С. 107-113
- 14. Митьков В.В., Митькова М.Д. Ультразвуковая эластография сдвиговой волной // Ультразвуковая и функциональная диагностика. 2015. № 2. С. 94–108
- 15. Sporea I., Sirli R., Bota S. et al. ARFI elastography for the evaluation of diffuse thyroid gland pathology: preliminary results // World J. Radiol. 2012. V. 4. No. 4. P. 174–178.
- 16. Митьков В.В., Иванишина Т.В., Гогаева И.М., Митькова М.Д., Брюховецкий Ю.А., Заболотская Н.В., Рудько Г.Г. Воспроизводимость эластографии сдвиговой волной при исследовании поверхностно расположенных органов (щитовидная железа) // Ультразвуковая и функциональная диагностика. 2015. № 6. С. 27–35.
- 17. Митьков В.В., Иванишина Т.В., Митькова М.Д. Эластография сдвиговой волной в мультипараметрической ультразвуковой диагностике рака щитовидной железы // Ультразвуковая и функциональная диагностика. 2016. № 1. С. 13–28.
- Bojunga J., Dauth N., Berner C. et al. Acoustic radiation force impulse imaging for differentiation of thyroid nodules // PLoS One. 2012. V. 7. No. 8. P. e42735.
- Rubaltelli L., Corradin S., Dorigo A. et al. Differential diagnosis of benign and malignant thyroid nodules at elastosonography // Ultraschall Med. 2009. V. 30. No. 2. P. 175-179.

- Sporea I., Vlad M., Bota S. et al. Thyroid stiffness assessment by acoustic radiation force impulse elastography (ARFI) // Ultraschall Med. 2011. V. 32. No. 3. P. 281-285.
- 21. Friedrich-Rust M., Romenski O., Meyer G. et al. ARFI-imaging patient feasibility study // Ultrasonics. 2012. V. 52. No. 1. P. 69-74.
- Королюк И.П. Медицинская информатика: Учебник. Изд. 2-е, перераб. и доп. Самара: Офорт, 2012. 244 с.
- 23. Zhang Y.F., Liu C., Xu H.X. et al. Acoustic radiation force impulse imaging: a new tool for the diagnosis of papillary thyroid microcarcinoma // Biomed.Res.Int.2014.Doi:10.1155/2014/416969.

Comparative Analysis of Stiffness in Focal Thyroid Lesions Using Point Shear Wave Elastography

A.N. Katrich, A.V. Okhotina, K.A. Shamakhyan, N.S. Ryabin Scientific Research Institute – Ochapovsky Regional Clinic Hospital No. 1, Krasnodar

A.N. Katrich - M.D., Ph.D., Head of Ultrasound Diagnostics Department, Scientific Research Institute - Ochapovsky Regional Clinic Hospital No. 1, Krasnodar. A.V. Okhotina - M.D., Ultrasound Diagnostics Department, Scientific Research Institute - Ochapovsky Regional Clinic Hospital No. 1, Krasnodar. K.A. Shamakhyan - M.D., Ultrasound Diagnostics Department, Scientific Research Institute - Ochapovsky Regional Clinic Hospital No. 1, Krasnodar. N.S. Ryabin - M.D., Endoscopy Department, Scientific Research Institute - Ochapovsky Regional Clinic Hospital No. 1, Krasnodar.

Retrospective analysis of ultrasound examination was done in 232 patients aged from 22 up to 80 years old. 30 patients formed the first (control) group. 202 patients with focal thyroid lesions formed the second group. Ultrasound examination was done using the Acuson S2000 (Siemens, Germany) (ARFI-elastography). Fine needle aspiration cytology were performed according to the elastography data. Following subgroups were formed according to the morphology results: nodular (colloid) goiter – 80 patients (80 nodules), nodular goiter – 68 (68 nodules), autoimmune thyroiditis – 42 (42 nodules), and thyroid cancer – 12 (12 nodules). Shear wave velocity among the patients of the control group (median – 1.56 m/s, interquartile range – 1.28–1.72 m/s) was significantly different from that of thyroid cancer, nodular goiter, and autoimmune thyroiditis (P < 0.05). Shear wave velocity in patients with thyroid cancer (2.51 m/s, 2.47–2.62 m/s) was significantly different from the patients with nodular goiter and autoimmune thyroiditis (P < 0.05). Shear wave velocity in patients with nodular goiter (1.80 m/c, 1.52–2.10 m/s), nodular goiter (1.70 m/s, 1.46–2.04 m/s), and autoimmune thyroiditis (1.90 m/c, 1.66–2.10 m/c) did not differ significantly. Sensitivity of point shear wave elastography in thyroid cancer diagnosis (shear wave speed > 2.45 m/s) – 83.3%, specificity – 95.2%, AUC – 0.931.

Key words: thyroid ultrasound, ultrasound elastography, point shear wave elastography, thyroid cancer, benign thyroid nodules.