Preview

Ultrasound & Functional Diagnostics

Advanced search

The role of initial left ventricle systolic rotation in the twist and untwist modulation in unstable angina and myocardial infarction

https://doi.org/10.24835/1607-0771-2022-2-49-66

Abstract

Objective: to evaluate the role of initial systolic rotation (ISR) of left ventricle (LV) in twist and untwist modulation in unstable angina (UA) and myocardial infarction (MI). Material and methods: 145 patients were examined and divided into three groups, the first of which included 30 patients with UA, the second - 62 patients with anterior MI, the third - 53 patients with inferior MI. Transthoracic echocardiography was performed in all patients with the use of Affiniti 70 (Philips, Netherlands) with aCMQ (automatic cardiac movement quantitative analysis) software. The maximal systolic peaks of segmental longitudinal and circular strain and global longitudinal and circular strain (GLS and GCS), systolic and diastolic rotation, twist and untwist of the left ventricle were assessed. The evaluation of basal and apical ISR based on curves of basal and apical LV rotation. Results: the twist and untwist of LV is predominantly influenced by the magnitude of circular strain of LV apical segments. A positive wave of basal ISR was obtained with higher frequency (44.1%) than a negative wave (31.7%) (P < 0.05). The presence of ISR of left ventricle basal segments is associated with greater basal systolic rotation and lesser LV twist (hereinafter: M ± SD, minimal - maximal values) (-3.0 ± 2.0 °, -8.4-1.2 ° and 7.5 ± 3.5 °, -1.0-16.4 °, respectively) than in the absence of the ISR wave (-4.5 ± 1.9 °, -12.1-0.1 °, P < 0.0001 and 9.1 ± 4.1 °, 0.5-21.5 °, P < 0.05, respectively). In all patients GLS values were significantly lower in the presence of basal ISR than in absence of it (-12.1 ± 3.4%, -18.2--3.0% and -10.7 ± 3,5%, -17.2--2.8%, respectively, P < 0.05). Significant GCS/GLS ratio decrease was obtained in the presence of ISR in comparison with its absence (1.71 ± 0.46, 0.67-3.70 and 1.92 ± 0.59, 0.96-4.10, respectively, P < 0.05). In UA and MI, a decrease in the systolic circular strain magnitude of basal segments <20% (modulus) in the presence of a basal ISR wave is combined with a decrease of the twisting index <1.0 °/cm (P < 0.05). In UA and MI, a decrease in the systolic circular strain magnitude of basal segments <20% (modulus) in the presence of a basal ISR wave is combined with a decrease in the untwisting index <0.35 °/cm (P < 0.05). Conclusions: the occurrence of basal ISR wave is higher in inferior MI than in anterior MI (P < 0.05). The presence of basal ISR wave is associated with lower values of LV twist in patients with UA and MI (P < 0.05), and modulate the effect of LV basal segment circular contraction on the value of the twisting and untwisting indices.

About the Authors

D. A. Shvec
Orel Clinical Regional Hospital
Russian Federation


S. V. Povetkin
Kursk State Medical University
Russian Federation


References

1. Ibanez B., James S., Agewall S., Antunes M.J., Bucciarelli-Ducci C., Bueno H., Caforio A.L.P., Crea F., Goudevenos J.A., Halvorsen S., Hindricks G., Kastrati A., Lenzen M.J., Prescott E., Roffi M., Valgimigli M., Varenhorst C., Vranckx P., Widimsky P.; ESC Scientific Document Group. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018; 39 (2): 119-177. https://doi.org/10.1093/eurheartj/ehx393

2. Collet J.P., Thiele H., Barbato E., Barthelemy O., Bauersachs J., Bhatt D.L., Dendale P., Dorobantu M., Edvardsen T., Folliguet T., Gale C.P., Gilard M., Jobs A., Juni P., Lambrinou E., Lewis B.S., Mehilli J., Meliga E., Merkely B., Mueller C., Roffi M., Rutten F.H., Sibbing D., Siontis G.C.M.; ESC Scientific Document Group. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021; 42 (14): 1289-1367. https://doi.org/10.1093/eurheartj/ehaa575

3. Madry W., Karolczak M.A. Physiological basis in the assessment of myocardial mechanics using speckle-tracking echocardiography 2D. Part I. J. Ultrason. 2016; 16 (65): 135-144. https://doi.org/10.15557/jou.2016.0015

4. Madry W., Karolczak M.A. Physiological basis in the assessment of myocardial mechanics using speckle-tracking echocardiography 2D. Part II. J. Ultrason. 2016; 16 (66): 304-316. https://doi.org/10.15557/jou.2016.0031

5. Павлюкова Е.Н., Трубина Е.В., Карпов Р.С. Ротация, скручивание и поворот по оси левого желудочка у больных ишемической и дилатационной кардиомиопатией. Ультразвуковая и функ циональная диагностика. 2013; 1: 44-53.

6. Hoffman J.I.E. Will the real ventricular architecture please stand up? Physiol. Rep. 2017; 5 (18): e13404. https://doi.org/10.14814/phy2.13404

7. Omar A.M., Bansal M., Sengupta P.P. Advances in echocardiographic imaging in heart failure with reduced and preserved ejection fraction. Circ. Res. 2016; 119 (2): 357-374. https://doi.org/10.1161/circresaha.116.309128

8. Buckberg G.D., Nanda N.C., Nguyen C., Kocica M.J. What is the heart? Anatomy, function, pathophysiology, and misconceptions. J. Cardiovasc. Dev. Dis. 2018; 5 (2): 33. https://doi.org/10.3390/jcdd5020033

9. Voigt J.U., Cvijic M. 2- and 3-dimensional myocardial strain in cardiac health and disease. JACC. Cardiovasc. Imaging. 2019; 12 (9): 1849-1863. https://doi.org/10.1016/j.jcmg.2019.01.044

10. Sengupta P.P., Tajik A.J., Chandrasekaran K., Khandheria B.K. Twist mechanics of the left ventricle: principles and application. JACC. Cardiovasc. Imaging. 2008; 1 (3): 366-376. https://doi.org/10.1016/j.jcmg.2008.02.006

11. Отто К.М. Клиническая эхокардиография: прак ти ческое руководство. Пер. с англ. под ред. М.М. Галагудзы, Т.М. Домницкой, М.М. Зеле - ни кина, Т.Ю. Кулагиной, В.С. Никифорова, В.А. Сандрикова. М.: Логосфера, 2019. 1352 с.

12. Codreanu I., Robson M.D., Golding S.J., Jung B.A., Clarke K., Holloway C.J. Longitudinally and circumferentially directed movements of the left ventricle studied by cardiovascular magnetic resonance phase contrast velocity mapping. J. Cardiovasc. Magn. Reson. 2010; 12 (1): 48. https://doi.org/10.1186/1532-429x-12-48

13. Wang J., Khoury D.S., Yue Y., Torre-Amione G., Nagueh S.F. Preserved left ventricular twist and circumferential deformation, but depressed longitudinal and radial deformation in patients with diastolic heart failure. Eur. Heart J. 2008; 29 (10): 1283-1289. https://doi.org/10.1093/eurheartj/ehn141

14. Nakatani S. Left ventricular rotation and twist: why should we learn? J. Cardiovasc. Ultrasound. 2011; 19 (1): 1-6. https://doi.org/10.4250/jcu.2011.19.1.1

15. Lang R.M., Badano L.P., Mor-Avi V., Afilalo J., Armstrong A., Ernande L., Flachskampf F.A., Foster E., Goldstein S.A., Kuznetsova T., Lancellotti P., Muraru D., Picard M.H., Rietzschel E.R., Rudski L., Spencer K.T., Tsang W., Voigt J.U. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging. 2015; 16 (3): 233-270. https://doi.org/10.1093/ehjci/jev014

16. Nagueh S.F., Smiseth O.A., Appleton C.P., Byrd B.F. 3rd, Dokainish H., Edvardsen T., Flachskampf F.A., Gillebert T.C., Klein A.L., Lancellotti P., Marino P., Oh J.K., Alexandru Popescu B., Waggoner A.D. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016; 29 (4): 277-314. https://doi.org/10.1016/j.echo.2016.01.011

17. Rampidis G.P., Benetos G., Benz D.C., Giannopoulos A.A., Buechel R.R. A guide for Gensini Score calculation. Atherosclerosis. 2019; 287: 181-183. https://doi.org/10.1016/j.atherosclerosis.2019.05.012

18. Pastore M.C., De Carli G., Mandoli G.E., D’Ascenzi F., Focardi M., Contorni F., Mondillo S., Cameli M. The prognostic role of speckle tracking echocardiography in clinical practice: evidence and reference values from the literature. Heart Fail. Rev. 2021; 26 (6): 1371-1381. https://doi.org/10.1007/s10741-020-09945-9

19. Gozdzik A., Letachowicz K., Grajek B.B., Plonek T., Obremska M., Jasinski M., Gozdzik W. Application of strain and other echocardiographic parameters in the evaluation of early and long-term clinical outcomes after cardiac surgery revascularization. BMC Cardiovasc. Disord. 2019; 19 (1): 189. https://doi.org/10.1186/s12872-019-1162-8

20. Park S.J., Park J.H., Lee H.S., Kim M.S., Park Y.K., Park Y., Kim Y.J., Lee J.H., Choi S.W., Jeong J.O., Kwon I.S., Seong I.W. Impaired RV global longitudinal strain is associated with poor long-term clinical outcomes in patients with acute inferior STEMI. JACC. Cardiovasc. Imaging. 2015; 8 (2): 161-169. https://doi.org/10.1016/j.jcmg.2014.10.011

21. Garcia-Martin A., Moya-Mur J.L., Carbonell-San Roman S.A., Garcia-Lledo A., Navas-Tejedor P., Muriel A., Rodriguez-Munoz D., Casas-Rojo E., Jimenez-Nacher J.J., Fernandez-Golfin C., Zamorano J.L. Four chamber right ventricular longi tudinal strain versus right free wall longitudinal strain. Prognostic value in patients with left heart disease. Cardiol. J. 2016; 23 (2): 189-194. https://doi.org/10.5603/cj.a2015.0079

22. Beyhoff N., Lohr D., Foryst-Ludwig A., Klopfleisch R., Brix S., Grune J., Thiele A., Erfinanda L., Tabuchi A., Kuebler W.M., Pieske B., Schreiber L.M., Kintscher U. Characterization of myocardial microstructure and function in an experimental model of isolated subendocardial damage. Hypertension. 2019; 74 (2): 295-304. https://doi.org/10.1161/hypertensionaha.119.12956

23. Nabeshima Y., Seo Y., Takeuchi M. A review of current trends in three-dimensional analysis of left ventricular myocardial strain. Cardiovasc. Ultrasound. 2020; 18 (1): 23. https://doi.org/10.1186/s12947-020-00204-3

24. Park J.H. Two-dimensional echocardiographic assessment of myocardial strain: important echocardiographic parameter readily useful in clinical field. Korean Circ. J. 2019; 49 (10): 908-931. https://doi.org/10.4070/kcj.2019.0200

25. Levy P.T., Machefsky A., Sanchez A.A., Patel M.D., Rogal S., Fowler S., Yaeger L., Hardi A., Holland M.R., Hamvas A., Singh G.K. Reference ranges of left ventricular strain measures by twodimensional speckle-tracking echocardiography in children: a systematic review and meta-analysis. J. Am. Soc. Echocardiogr. 2016; 29 (3): 209-225.e6. https://doi.org/10.1016/j.echo.2015.11.016

26. Feijao A., Pereira S.V., Morais H. Difficulties and pitfalls in performing speckle-tracking echocardiography to assess left ventricular systolic function. EC Cardiology. 2020; 7 (8): 30-35. https://ecronicon.com/eccy/pdf/ECCY-07-00731.pdf

27. Gerach T., Appel S., Wilczek J., Golba K.S., Jadczyk T., Loewe A. Dyssynchronous left ventricular activation is insufficient for the breakdown of wringing rotation. Front. Physiol. 2022; 13: 838038. https://doi.org/10.3389/fphys.2022.838038

28. Либби П. (ред.) Болезни сердца по Браунвальду: Руководство по сердечно-сосудистой медицине. Пер. с англ. под общ. ред. Р.Г. Оганова. В 4 т. Т. 3: главы 38-60. М.: Логосфера, 2013. 728 с.

29. Kim W.J., Lee B.H., Kim Y.J., Kang J.H., Jung Y.J., Song J.M., Kang D.H., Song J.K. Apical rotation assessed by speckle-tracking echocardiography as an index of global left ventricular contractility. Circ. Cardiovasc. Imaging. 2009; 2 (2): 123-131. https://doi.org/10.1161/circimaging.108.794719

30. Павлюкова Е.Н., Кужель Д.А., Матюшин Г.В., Савченко Е.А., Филиппова С.А. Ротация, скручивание и раскручивание левого желудочка: физиологическая роль и значение в клинической практике. Рациональная фармакотерапия в кардиологии. 2015; 11 (1): 68-78. https://doi.org/10.20996/1819-6446-2015-11-1-68-78

31. Mirea O., Pagourelias E.D., Duchenne J., Bogaert J., Thomas J.D., Badano L.P., Voigt J.U.; EACVIASE-Industry Standardization Task Force. Variability and reproducibility of segmental longitudinal strain measurement: a report from the EACVI-ASE strain standardization task force. JACC. Cardiovasc. Imaging. 2018; 11 (1): 15-24. https://doi.org/10.1016/j.jcmg.2017.01.027

32. Hensel K.O., Wilke L., Heusch A. Transthoracic speckle tracking echocardiography for the quantitative assessment of left ventricular myocardial deformation. J. Vis. Exp. 2016; 116: 54736. https://doi.org/10.3791/54736

33. Torrent-Guasp F., Kocica M.J., Corno A.F., Komeda M., Carreras-Costa F., Flotats A., Cosin-Aguillar J., Wen H. Towards new understanding of the heart structure and function. Eur. J. Cardiothorac. Surg. 2005; 27 (2): 191-201. https://doi.org/10.1016/j.ejcts.2004.11.026

34. Mora V., Roldan I., Romero E., Sauri A., Romero D., Perez-Gozalbo J., Ugalde N., Bertolin J., Rodriguez-Israel M., Delgado C.P., Lowenstein J.A. Myocardial contraction during the diastolic isovolumetric period: analysis of longitudinal strain by means of speckle tracking echocardiography. J. Cardiovasc. Dev. Dis. 2018; 5 (3): 41. https://doi.org/10.3390/jcdd5030041

35. Chen R., Wu X., Shen L.J., Wang B., Ma M.M., Yang Y., Zhao B.W. Left ventricular myocardial function in hemodialysis and nondialysis uremia patients: a three-dimensional speckle-tracking echocardiography study. PLoS One. 2014; 9 (6): e100265. https://doi.org/10.1371/journal.pone.0100265

36. Huang J., Yan Z.N., Fan L., Rui Y.F., Song X.T. Left ventricular systolic function changes in hypertrophic cardiomyopathy patients detected by the strain of different myocardium layers and longitudinal rotation. BMC Cardiovasc. Disord. 2017; 17 (1): 214. https://doi.org/10.1186/s12872-017-0651-x

37. Stoylen A., Molmen H.E., Dalen H. Left ventricular global strains by linear measurements in three dimensions: interrelations and relations to age, gender and body size in the HUNT Study. Open Heart. 2019; 6 (2): e001050. https://doi.org/10.1136/openhrt-2019-001050

38. Williams A.M., Shave R.E., Cheyne W.S., Eves N.D. The influence of adrenergic stimulation on sex differences in left ventricular twist mechanics. J. Physiol. 2017; 595 (12): 3973-3985. https://doi.org/10.1113/jp273368

39. Алехин М.Н., Степанова А.И. Эхокардиография в оценке постсистолического укорочения миокарда левого желудочка сердца. Кардиология. 2020; 60 (12): 110-116. https://doi.org/10.18087/cardio.2020.12.n1087


Review

For citations:


Shvec D.A., Povetkin S.V. The role of initial left ventricle systolic rotation in the twist and untwist modulation in unstable angina and myocardial infarction. Ultrasound & Functional Diagnostics. 2022;(2):49-66. (In Russ.) https://doi.org/10.24835/1607-0771-2022-2-49-66

Views: 119


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-0771 (Print)
ISSN 2408-9494 (Online)