Preview

Ultrasound & Functional Diagnostics

Advanced search

Multifactorial model for predicting adverse post-infarction left ventricular remodeling, including left ventricular–arterial coupling

https://doi.org/10.24835/1607-0771-2022-4-43-56

Abstract

Objective: to obtain the early predictors and predictive model for adverse left ventricular remodeling in patients with ST-segment elevation myocardial infarction.

Material and methods: the study included 141 patients with primary ST-segment elevation myocardial infarction. A comprehensive clinical, laboratory, and instrumental examination was carried out on days 7–9 from the disease onset, and in 24 and 48 weeks of follow-up with full pharmacotherapy preservation.

Results: the follow-up was completed in 125 (88.7%) patients. They were divided into two groups according to the results of echocardiography: the group with adverse left ventricular remodeling (n = 63) (an increase of end-diastolic volume index >20% and (or) end-systolic volume index >15% in 24 week in comparison with days 7–9 examination) and the group of slowly progressive left ventricular remodeling (n = 62). The frequency of adverse outcomes (repeated myocardial infarction, unstable angina, hospitalization for heart failure decompensation, ventricular arrhythmias, cardiac surgery) during 48 weeks of follow-up was 30.2% (19 patients) in the group of adverse left ventricular remodeling and 4.8% (3 patients) in the group of slowly progressive left ventricular remodeling. The odds ratio for adverse outcome was 8.5 (95% confidence interval – 2.4–30.5) (P = 0.001). According to the results of univariate regression analysis, the risk factors for adverse left ventricular remodeling were: waist circumference, brain natriuretic peptide, end-systolic volume index, left ventricular ejection fraction, end-systolic left ventricular elastance, including normalized to body surface area, left ventricular–arterial coupling index, local systolic pressure in the common carotid arteries. The predictive model including a waist circumference, value of brain natriuretic peptide, and left ventricular–arterial coupling index was developed according to the results of multivariate analysis.

Conclusion: the developed predictive model for various types of left ventricular remodeling after ST-segment elevation myocardial infarction is useful for risk stratification.

About the Authors

V. E. Oleynikov
Penza State University
Russian Federation

V.E. Oleynikov – M.D., Ph.D., Professor, Director, Division of Therapy

Penza



L. I. Salyamova
Penza State University
Russian Federation

L.I. Salyamova – M.D., Ph.D., Associate Professor, Division of Therapy



O. G. Kvasova
Penza State University
Russian Federation

O.G. Kvasova – M.D., Senior Teacher, Division of Therapy



V. A. Galimskaya
Penza State University
Russian Federation

V.A. Galimskaya – M.D., Ph.D., Associate Professor, Division of Therapy



O. D. Vershinina
Penza State University
Russian Federation

O.D. Vershinina – M.D., Ph.D. fellow, Division of Therapy



References

1. Shlyakhto E.V., Zvartau N.E., Villevalde S.V., Yakovlev A.N., Soloveva A.E., Fedorenko A.A., Karlina V.A., Avdonina N.G., Endubaeva G.V., Zaitsev V.V., Neplyueva G.A., Pavlyuk E.I., Dubinina M.V., Medvedeva E.A., Erastov A.M., Panarina S.A., Solovev A.E. Assessment of prevalence and monitoring of outcomes in patients with heart failure in Russia. Russian Journal of Cardiology. 2020; 25 (12): 4204. https://doi.org/10.15829/1560-4071-2020-4204 (in Russian)

2. McDonagh T.A., Metra M., Adamo M., Gardner R.S., Baumbach A., Bohm M., Burri H., Butler J., Celutkiene J., Chioncel O., Cleland J.G.F., Coats A.J.S., Crespo-Leiro M.G., Farmakis D., Gilard M., Heymans S., Hoes A.W., Jaarsma T., Jankowska E.A., Lainscak M., Lam C.S.P., Lyon A.R., McMurray J.J.V., Mebazaa A., Mindham R., Muneretto C., Francesco Piepoli M., Price S., Rosano G.M.C., Ruschitzka F., Kathrine Skibelund A.; ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021; 42 (36): 3599–3726. https://doi.org/10.1093/eurheartj/ehab368

3. Jones N.R., Roalfe A.K., Adoki I., Hobbs F.D.R., Taylor C.J. Survival of patients with chronic heart failure in the community: a systematic review and meta-analysis. Eur. J. Heart Fail. 2019; 21 (11): 1306–1325. https://doi.org/10.1002/ejhf.1594

4. Magnussen C., Niiranen T.J., Ojeda F.M., Gianfagna F., Blankenberg S., Vartiainen E., Sans S., Pasterkamp G., Hughes M., Costanzo S., Donati M.B., Jousilahti P., Linneberg A., Palosaari T., de Gaetano G., Bobak M., den Ruijter H.M., Jorgensen T., Soderberg S., Kuulasmaa K., Zeller T., Iacoviello L., Salomaa V., Schnabel R.B.; BiomarCaRE Consortium. Sexspecific epidemiology of heart failure risk and morta lity in Europe: results from the BiomarCaRE Consortium. JACC Heart Fail. 2019; 7 (3): 204– 213. https://doi.org/10.1016/j.jchf.2018.08.008

5. Savarese G., Lund L.H. Global public health burden of heart failure. Card. Fail. Rev. 2017; 3 (1): 7–11. https://doi.org/10.15420/cfr.2016:25:2

6. Polyakov D.S., Fomin I.V., Belenkov Yu.N., Mareev V.Yu., Ageev F.T., Artemjeva E.G., Badin Yu.V., Bakulina E.V., Vinogradova N.G., Galyavich A.S., Ionova T.S., Kamalov G.M., Kechedzhieva S.G., Koziolova N.A., Malen kova V.Yu., Malchikova S.V., Mareev Yu.V., Smirnova E.A., Tarlovskaya E.I., Shcherbinina E.V., Yakushin S.S. Chronic heart failure in the Russian Federation: what has changed over 20 years of follow-up? Results of the EPOCH-CHF study. Kardiologiia. 2021; 61 (4): 4–14. https://doi.org/10.18087/cardio.2021.4.n1628 (in Russian)

7. Shetye A., Nazir S.A., Squire I.B., McCann G.P. Global myocardial strain assessment by different imaging modalities to predict outcomes after ST-elevation myocardial infarction: a systematic review. World J. Cardiol. 2015; 7 (12): 948–960. https://doi.org/10.4330/wjc.v7.i12.948

8. Galli A., Lombardi F. Postinfarct left ventricular remodelling: a prevailing cause of heart failure. Cardiol. Res. Pract. 2016; 2016: 2579832. https://doi.org/10.1155/2016/2579832

9. Frantz S., Hundertmark M.J., Schulz-Menger J., Bengel F.M., Bauersachs J. Left ventricular remodelling post-myocardial infarction: pathophysiology, imaging, and novel therapies. Eur. Heart J. 2022; 43 (27): 2549–2561. https://doi.org/10.1093/eurheartj/ehac223

10. van der Bijl P., Abou R., Goedemans L., Gersh B.J., Holmes D.R. Jr., Ajmone Marsan N., Delgado V., Bax J.J. Left ventricular post-infarct remodeling: implications for systolic function improvement and outcomes in the modern era. JACC Heart Fail. 2020; 8 (2): 131–140. https://doi.org/10.1016/j.jchf.2019.08.014

11. Clinical practice guidelines Acute myocardial infarction with ST-segment elevation, https://cr.minzdrav.gov.ru/recomend/157_4 (2020, accessed 20.10.2022). (in Russian)

12. Ikonomidis I., Aboyans V., Blacher J., Brodmann M., Brutsaert D.L., Chirinos J.A., De Carlo M., Delgado V., Lancellotti P., Lekakis J., Mohty D., Nihoyannopoulos P., Parissis J., Rizzoni D., Ruschitzka F., Seferovic P., Stabile E., Tousoulis D., Vinereanu D., Vlachopoulos C., Vlastos D., Xaplanteris P., Zimlichman R., Metra M. The role of ventricular-arterial coupling in cardiac disease and heart failure: assessment, clinical implications and therapeutic interventions. A consensus document of the European Society of Cardiology Working Group on Aorta & Peripheral Vascular Diseases, European Association of Cardiovascular Imaging, and Heart Failure Association. Eur. J. Heart Fail. 2019; 21 (4): 402–424. https://doi.org/10.1002/ejhf.1436

13. Oleynikov V.E., Salyamova L.I., Burko N.V., Khromova A.A., Krivonogov L.Yu., Melnikova E.A. Ultrasound evaluation of the great arteries based on the analysis of radio-frequency signal. Biomedical Engineering. 2016; 299 (5): 48–51. (in Russian)

14. Chantler P.D., Lakatta E.G., Najjar S.S. Arterialventricular coupling: mechanistic insights into cardiovascular performance at rest and during exercise. J. Appl. Physiol. (1985). 2008; 105 (4): 1342–1351. https://doi.org/10.1152/japplphysiol. 90600.2008

15. Clinical practice guidelines Chronic heart failure, https://cr.minzdrav.gov.ru/recomend/156_1 (2020, accessed 20.10.2022). (in Russian)

16. Bhatt A.S., Ambrosy A.P., Velazquez E.J. Adverse remodeling and reverse remodeling after myocardial infarction. Curr. Cardiol. Rep. 2017; 19 (8): 71. https://doi.org/10.1007/s11886-017-0876-4

17. Ferrari R., Malagu M., Biscaglia S., Fucili A., Rizzo P. Remodelling after an infarct: crosstalk between life and death. Cardiology. 2016; 135 (2): 68–76. https://doi.org/10.1159/000445882

18. Roger V.L. Epidemiology of heart failure: a contemporary perspective. Circ. Res. 2021; 128 (10): 1421–1434. https://doi.org/10.1161/circresaha. 121.318172

19. Lustosa R.P., van der Bijl P., El Mahdiui M., Montero-Cabezas J.M., Kostyukevich M.V., Ajmone Marsan N., Bax J.J., Delgado V. Noninvasive myocar dial work indices 3 months after ST-segment elevation myocardial infarction: prevalence and characteristics of patients with postinfarction cardiac remodeling. J. Am. Soc. Echocardiogr. 2020; 33 (10): 1172–1179. https://doi.org/10.1016/j.echo.2020.05.001

20. Chirinos J.A. Ventricular-arterial coupling: invasive and non-invasive assessment. Artery Res. 2013; 7 (1): 10.1016/j.artres.2012.12.002. https://doi.org/10.1016/j.artres.2012.12.002

21. Bonarjee V.V.S. Arterial stiffness: a prognostic marker in coronary heart disease. Available methods and clinical application. Front. Cardiovasc. Med. 2018; 5: 64. https://doi.org/10.3389/fcvm.2018.00064

22. Lonnebakken M.T., Eskerud I., Larsen T.H., Midtbo H.B., Kokorina M.V., Gerdts E. Impact of aortic stiffness on myocardial ischaemia in nonobstructive coronary artery disease. Open Heart. 2019; 6 (1): e000981. https://doi.org/10.1136/openhrt-2018-000981

23. Bell V., McCabe E.L., Larson M.G., Rong J., Merz A.A., Osypiuk E., Lehman B.T., Stantchev P., Aragam J., Benjamin E.J., Hamburg N.M., Vasan R.S., Mitchell G.F., Cheng S. Relations between aortic stiffness and left ventricular mechanical function in the community. J. Am. Heart Assoc. 2017; 6 (1): e004903. https://doi.org/10.1161/jaha.116.004903

24. Vasyuk Yu.A., Ivanova S.V., Shkolnik E.L., Kotovskaya Yu.V., Milyagin V.A., Oleynikov V.E., Orlova Y.A., Sumin A.N., Baranov A.A., Boytsov S.A., Galyavich A.S., Kobalava Z.D., Kozhevni kova O.V., Konradi A.O., Lopatin Yu.M., Mareev V.Yu., Novikova D.S., Oganov R.G., Rogoza A.N., Rotar O.P., Sergatskaya N.V., Skibitsky V.V. Consensus of Russian experts on the evaluation of arterial stiffness in clinical practice. Cardio vascular Therapy and Prevention. 2016; 15 (2): 4–19. https://doi.org/10.15829/1728-8800-2016-2-4-19 (in Russian)

25. Uddin Md.H., Rashid T., Chowdhury S.M. Role of B-type natriuretic peptide (BNP) in heart failure. Int. J. Disabil. Hum. Dev. 2017; 16 (1): 3–9. https://doi.org/10.1515/ijdhd-2015-0021


Review

For citations:


Oleynikov V.E., Salyamova L.I., Kvasova O.G., Galimskaya V.A., Vershinina O.D. Multifactorial model for predicting adverse post-infarction left ventricular remodeling, including left ventricular–arterial coupling. Ultrasound & Functional Diagnostics. 2022;(4):43-56. (In Russ.) https://doi.org/10.24835/1607-0771-2022-4-43-56

Views: 179


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-0771 (Print)
ISSN 2408-9494 (Online)