Influence of ultrasound image quality on the left ventricle strain and rotation parameters
https://doi.org/10.24835/1607-0771-2022-4-57-70
Abstract
Objective: to compare the values of longitudinal and circumferential strain, rotation, twist, and untwist of the left ventricle in patients with acute coronary syndrome depending on the quality of ultrasound images.
Material and methods: depending on the quality of ultrasound images in a short axis planes 320 patients with acute coronary syndrome (unstable angina, myocardial infarction) were divided into two groups. The 1st group consisted of 210 patients with good quality of ultrasound images of the heart (decrease of image clarity less than 4 segments at all levels), the 2nd group – 110 patients with excellent quality of ultrasound images of the heart (high image clarity of all segments). There were clear images of heart structures in apical planes in both groups in all cases. The image quality assessed with the use of the 16-segment model of the left ventricle. The modules of the obtained values of global, average and regional strain, rotation, twist, and untwist were compared.
Results: the body mass index in the 1st group of patients (good quality of image) was significantly higher. The frequency of disorders of left ventricle regional strain in the groups was comparable. The values of circumferential strain (global, average, and regional, except for the apical inferior segment) were significantly lower in the 1st group of patients. The values of global longitudinal strain, average longitudinal strain at the level of the mid segments, and regional longitudinal strain of the mid segments of the left ventricle (except for the mid inferoseptal) were significantly lower in the 1st group of patients. There were no significant differences of left ventricle rotation (except for basal in systole), twist and untwist, and their indices between the groups. As well as no significant differences were obtained for standard echocardiography parameters between the groups.
Conclusion: the values of circumferential strain (global, average, and regional, except for the apical inferior segment) and longitudinal strain (global, average at the level of the mid segments, and regional for all mid segments except for the mid inferoseptal) depends on quality of ultrasound image in our study. The values of rotation (except for basal left ventricle rotation in systole), left ventricle twist and untwist does not depend on ultrasound images quality (good versus excellent).
About the Authors
D. A. ShvecRussian Federation
D.A. Shvec – M.D., Ph.D., Department of Cardiology
Orel
S. V. Povetkin
Russian Federation
S.V. Povetkin – M.D., Ph.D., Professor, Director, Division of Clinical Pharmacology
Kursk
References
1. Osipov L.V. Ultrasound scanners. Mosсow: Vidar, 1999. 256 p. (in Russian)
2. Rosner A., Barbosa D., Aarsather E., Kjonas D., Schirmer H., D’hooge J. The influence of frame rate on two-dimensional speckle-tracking strain measurements: a study on silico-simulated models and images recorded in patients. Eur. Heart J. Cardiovasc. Imaging. 2015; 16 (10): 1137–1147. https://doi.org/10.1093/ehjci/jev058
3. Voigt J.U., Cvijic M. 2- and 3-dimensional myocardial strain in cardiac health and disease. JACC. Cardiovasc. Imaging. 2019; 12 (9): 1849–1863. https://doi.org/10.1016/j.jcmg.2019.01.044
4. Nicolosi G.L. The strain and strain rate imaging paradox in echocardiography: overabundant literature in the last two decades but still uncertain clinical utility in an individual case. Arch. Med. Sci. Atheroscler. Dis. 2020; 5: e297–e305. https://doi.org/10.5114/amsad.2020.103032
5. Pedrizzetti G., Claus P., Kilner P.J., Nagel E. Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use. J. Cardiovasc. Magn. Reson. 2016; 18 (1): 51. https://doi.org/10.1186/s12968-016-0269-7
6. Ibanez B., James S., Agewall S., Antunes M.J., Bucciarelli-Ducci C., Bueno H., Caforio A.L.P., Crea F., Goudevenos J.A., Halvorsen S., Hindricks G., Kastrati A., Lenzen M.J., Prescott E., Roffi M., Valgimigli M., Varenhorst C., Vranckx P., Widimsky P.; ESC Scientific Document Group. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018; 39 (2): 119–177. https://doi.org/10.1093/eurheartj/ehx393
7. Roffi M., Patrono C., Collet J.P., Mueller C., Valgimigli M., Andreotti F., Bax J.J., Borger M.A., Brotons C., Chew D.P., Gencer B., Hasenfuss G., Kjeldsen K., Lancellotti P., Landmesser U., Mehilli J., Mukherjee D., Storey R.F., Windecker S.; ESC Scientific Document Group. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2016; 37 (3): 267–315. https://doi.org/10.1093/eurheartj/ehv320
8. Lang R.M., Badano L.P., Mor-Avi V., Afilalo J., Armstrong A., Ernande L., Flachskampf F.A., Foster E., Goldstein S.A., Kuznetsova T., Lancellotti P., Muraru D., Picard M.H., Rietzschel E.R., Rudski L., Spencer K.T., Tsang W., Voigt J.U. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging. 2015; 16 (3): 233–270. https://doi.org/10.1093/ehjci/jev014
9. Harkness A., Ring L., Augustine D.X., Oxborough D., Robinson S., Sharma V. Normal reference intervals for cardiac dimensions and function for use in echocardiographic practice: a guideline from the British Society of Echocardiography. Echo Res. Pract. 2020; 7 (1): X1. https://doi.org/10.1530/erp-19-0050
10. Madry W., Karolczak M.A. Physiological basis in the assessment of myocardial mechanics using speckle-tracking echocardiography 2D. Part II. J. Ultrason. 2016; 16 (66): 304–316. https://doi.org/10.15557/jou.2016.0031
11. Park C.M., March K., Williams S., Kukadia S., Ghosh A.K., Jones S., Tillin T., Chaturvedi N., Hughes A.D. Feasibility and reproducibility of left ventricular rotation by speckle tracking echocardiography in elderly individuals and the impact of different software. PLoS One. 2013; 8 (9): e75098. https://doi.org/10.1371/journal.pone.0075098
12. Levy P.T., Machefsky A., Sanchez A.A., Patel M.D., Rogal S., Fowler S., Yaeger L., Hardi A., Holland M.R., Hamvas A., Singh G.K. Reference ranges of left ventricular strain measures by twodimensional speckle-tracking echocardiography in children: a systematic review and meta-analysis. J. Am. Soc. Echocardiogr. 2016; 29 (3): 209–225.e6. https://doi.org/10.1016/j.echo.2015.11.016
13. Mirea O., Pagourelias E.D., Duchenne J., Bogaert J., Thomas J.D., Badano L.P., Voigt J.U.; EACVI-ASE-Industry Standardization Task Force. Variability and reproducibility of segmental longitudinal strain measurement: a report from the EACVI-ASE strain standardization task force. JACC. Cardiovasc. Imaging. 2018; 11 (1): 15–24. https://doi.org/10.1016/j.jcmg.2017.01.027
14. Buckberg G.D., Nanda N.C., Nguyen C., Kocica M.J. What is the heart? Anatomy, function, pathophysiology, and misconceptions. J. Cardiovasc. Dev. Dis. 2018; 5 (2): 33. https://doi.org/10.3390/jcdd5020033
15. Madry W., Karolczak M.A. Physiological basis in the assessment of myocardial mechanics using speckle-tracking echocardiography 2D. Part I. J. Ultrason. 2016; 16 (65): 135–144. https://doi.org/10.15557/jou.2016.0015
16. Milne M.L., Schick B.M., Alkhazal T., Chung C.S. Myocardial fiber mapping of rat hearts, using apparent backscatter, with histologic validation. Ultrasound Med. Biol. 2019; 45 (8): 2075–2085. https:/doi.org/10.1016/j.ultrasmedbio.2019.05.002
17. Kociemba A., Karmelita-Katulska K., Siniawski A., Lanocha M., Janus M., Stajgis M., Grajek S., Pyda M. Magnetic resonance imaging in the diagnostics of myocardial infarction. Pol. J. Radiol. 2011; 76 (3): 53–57.
18. Clinical practice guidelines Chronic heart failure, https://cr.minzdrav.gov.ru/schema/156_1 (2020, accessed 25.11.2022). (in Russian)
19. McDonagh T.A., Metra M., Adamo M., Gardner R.S., Baumbach A., Bohm M., Burri H., Butler J., Celutkiene J., Chioncel O., Cleland J.G.F., Coats A.J.S., Crespo-Leiro M.G., Farmakis D., Gilard M., Heymans S., Hoes A.W., Jaarsma T., Jankowska E.A., Lainscak M., Lam C.S.P., Lyon A.R., McMurray J.J.V., Mebazaa A., Mindham R., Muneretto C., Piepoli M.F., Price S., Rosano G.M.C., Ruschitzka F., Skibelund A.K.; ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021; 42 (36): 3599–3726. https://doi.org/10.1093/eurheartj/ehab368
Review
For citations:
Shvec D.A., Povetkin S.V. Influence of ultrasound image quality on the left ventricle strain and rotation parameters. Ultrasound & Functional Diagnostics. 2022;(4):57-70. (In Russ.) https://doi.org/10.24835/1607-0771-2022-4-57-70