Preview

Ultrasound & Functional Diagnostics

Advanced search

Echogenicity of atherosclerotic plaque - a criterion for assessing the dynamics and prognosis of cardiovascular diseases

https://doi.org/10.24835/1607-0771-2023-4-35-48

Abstract

Aim: to measure the echogenicity of atherosclerotic plaques (AP) of carotid arteries to assess the dynamics of atherosclerosis and risk of cardiovascular outcomes (CVO) in patients with different CVD risk.

Materials and methods. The study included 223 patients: 80 patients (47 males) with moderate CVD risk (mean age: 53 years, range: 39-66) (Group 1) and 143 patients (123 males) with acute coronary syndrome (ACS) and high CVD risk (mean age: 57, range: 32-83) years (Group 2). All patients were examined at the Chazov National Medical Research Center of Cardiology. Patients underwent a standard clinical examination, biochemical blood test with lipid profile determination, and ultrasound duplex scanning. Patients with ACS were re-examined after 1-1.5 years and patients with moderate CVD risk were re-examined after 1 and 7 years.

Results. We analyzed 181 APs in Group 1 and 378 APs in Group 2. Analysis of gray-scale median (GSM) at the first and second visit showed a significant increase in GSM in both groups: from 67.02 [54.13; 82.85] to 73.5 [59.5; 88.7] (p<0.0001) in Group 1, and from 49.3 [39.73;63.64] to 50.7 [40.04;66.54] (p<0.05) in Group 2. An increase in GSM was observed in 79% of patients in Group 1, in 53% of patients in Group 2. Unfavorable CVO (CVO+) developed after 7 years in 7 (8.8%) patients in Group 1, and after 1 year in 23 (23%) patients in Group 2. In Group 1, an increase in GSM was observed only in patients with favorable prognosis (CVO-): from 67.7[52.13; 79.0] to 77.5[64.12; 91.0] (n=148 AP, p<0.05), in patients with CVO+, GSM increased non-significantly from 60.1[53.5; 66.5] to 66.5[55.0; 71.6] (n=18 AP, p=NS). In Group 2, a significant increase in GSM was observed in patients with CVO-: from 48.7[39.0; 63.4] to 51.3[40.0; 67.4] (n=141 AP, p<0.01), in patients with CVO+, GSM decreased from 51.6[42.9; 72.5] to 50.2[40.4; 65.0] (n=43 AP, p=NS). In Group 2, GSM significantly increased by 2.75 (6.05%) from the initial value (p<0.05) in patients with CVO-, while patients with CVO+ showed a significant decrease in the average GSM of AP by 3.33 (7.8%) (p<0.05). Using ROC analysis, a Δ% GSM value of 6.96% was found (area under the curve 0.628 ± 0.0465 [95% CI 0.556 - 0.696], p = 0.0058). According to Cox regression analysis, the risk of CVO increased by 2.16 times with a decrease in GSM AP in the carotid arteries over time by ≥ 6.96% (НR=2.16; 95% CI=1.331 – 3.507); p=0.009.

Conclusion. The ultrasound method of measuring the echogenicity of an atherosclerotic plaque of the carotid artery using GSM parameter can be effective for assessing the dynamics of atherosclerosis and prognosis of adverse cardiovascular events in patients with high and moderate CVD risk

About the Authors

O. A. Pogorelova
National medical research centre of cardiology named after academician E.I. Chazov of the Ministry of Healthcare of the Russian Federation; 15a, Academician Chazov str., Moscow 121552, Russian Federation
Russian Federation

Olga A. Pogorelova – Cand. of Sci. (Med.), Senior Researcher, Vascular ultrasound laboratory, National medical research centre of cardiology named after academician E.I. Chazov of the Ministry of Healthcare of the Russian Federation, Moscow.



M. A. Tripoten
National medical research centre of cardiology named after academician E.I. Chazov of the Ministry of Healthcare of the Russian Federation; 15a, Academician Chazov str., Moscow 121552, Russian Federation
Russian Federation

Maria A. Tripoten – Cand. of Sci. (Med.), Senior Researcher, Vascular ultrasound laboratory, National medical research centre of cardiology named after academician E.I. Chazov of the Ministry of Healthcare of the Russian Federation, Moscow. 



L. Sh. Hamchieva
National medical research centre of cardiology named after academician E.I. Chazov of the Ministry of Healthcare of the Russian Federation; 15a, Academician Chazov str., Moscow 121552, Russian Federation
Russian Federation

Leila Sh. Khamchieva – Cand. of Sci. (Med.), Junior Researcher, Vascular ultrasound laboratory, National medical research centre of cardiology named after academician E.I. Chazov of the Ministry of Healthcare of the Russian Federation, Moscow.



D. A. Guchaeva
National medical research centre of cardiology named after academician E.I. Chazov of the Ministry of Healthcare of the Russian Federation; 15a, Academician Chazov str., Moscow 121552, Russian Federation
Russian Federation

Dinara A. Guchaeva – Cand. of Sci. (Med.), cardiologist, Emergency cardiology department, National medical research centre of cardiology named after academician E.I. Chazov of the Ministry of Healthcare of the Russian Federation, Moscow.



S. G. Kozlov
National medical research centre of cardiology named after academician E.I. Chazov of the Ministry of Healthcare of the Russian Federation; 15a, Academician Chazov str., Moscow 121552, Russian Federation
Russian Federation

Sergey G. Kozlov – Doct. of Sci. (Med.), Senior Researcher, Atherosclerosis department, National medical research centre of cardiology named after academician E.I. Chazov of the Ministry of Healthcare of the Russian Federation, Moscow. 



R. M. Shakhnovich
National medical research centre of cardiology named after academician E.I. Chazov of the Ministry of Healthcare of the Russian Federation; 15a, Academician Chazov str., Moscow 121552, Russian Federation
Russian Federation

Roman M. Shakhnovich – Doct. of Sci. (Med.), Professor, The institute of advanced training of higher qualification levels, National medical research centre of cardiology named after academician E.I. Chazov of the Ministry of Healthcare of the Russian Federation, Moscow. 



T. V. Balakhonova
National medical research centre of cardiology named after academician E.I. Chazov of the Ministry of Healthcare of the Russian Federation; 15a, Academician Chazov str., Moscow 121552, Russian Federation
Russian Federation

Tatyana V. Balakhonova – Doct. of Sci. (Med.), Professor, Chief Researcher, Head of Vascular ultrasound laboratory, National medical research centre of cardiology named after academician E.I. Chazov of the Ministry of Healthcare of the Russian Federation, Moscow.  



References

1. Saba L., Brinjikji W., Spence J.D., Wintermark M., Castillo M., de Borst G.J., Yang Q., Yuan C., Buckler A., Edjlali M., Saam T., Saloner D., Lal B.K., Capodanno D., Sun J., Balu N., Naylor R., Lugt A.V.D., Wasserman B.A., Kooi M.E., Wardlaw J., Gillard J., Lanzino G., Hedin U., Mikulis D., Gupta A., DeMarco J.K., Hess C., Goethem J.V., Hatsukami T., Rothwell P., Brown M.M., Moody A.R. Roadmap Consensus on Carotid Artery Plaque Imaging and Impact on Therapy Strategies and Guidelines: An International, Multispecialty, Expert Review and Position Statement. Am. J. Neuroradiol. 2021; 42 (9): 1566–1575. https://doi.org/10.1016/j.jvssci.2021.03.001

2. Migdalski A., Jawien A. New insight into biology, molecular diagnostics and treatment options of unstable carotid atherosclerotic plaque: a narrative review. Ann. Transl. Med. 2021; 9 (14): 1207. https://doi.org/10.21037/atm-20-7197

3. Saba L., Cau R., Murgia A., Nicolaides A.N., Wintermark M., Castillo M., Staub D., Kakkos S.K., Yang Q., Paraskevas K.I., Yuan C., Edjlali M., Sanfilippo R., Hendrikse J., Johansson E., Mossa-Basha M., Balu N., Dichgans M., Saloner D., Bos D., Jager H.R., Naylor R., Faa G., Suri J.S., Costello J., Auer D.P., Mcnally J.S., Bonati L.H., Nardi V., van der Lugt A., Griffin M., Wasserman B.A., Kooi M.E., Gillard J., Lanzino G., Mikhailidis D.P., Mandell D.M., Benson J.C., van Dam-Nolen D.H.K., Kopczak A., Song J.W., Gupta A., DeMarco J.K., Chaturvedi S., Virmani R., Hatsukami T.S., Brown M., Moody A.R., Libby P., Schindler A., Saam T. Carotid Plaque-RADS: A Novel Stroke Risk Classification System. JACC Cardiovasc. Imaging. 2024; 17 (1): 62–75. https://doi.org/10.1016/j.jcmg.2023.09.005

4. Mitchell C. Grayscale Analysis of Carotid Plaque: An Overview. J. Am. Soc. Echocardiogr. 2019; 32 (8): A21–22. https://doi.org/10.1016/j.echo.2019.06.007

5. Kadoglou N.P., Khattab E., Velidakis N., Patsourakos N., Lambadiari V. A new approach of statin therapy in carotid atherosclerosis: Targeting indices of plaque vulnerability on the top of lipid-lowering. A narrative review. Kardiol Pol. 2022; 80 (9): 880–890. https://doi.org/ 10.33963/KP.a2022.0155

6. Ishizu T., Seo Y., Machino T., Kawamura R., Kimura T., Murakoshi N., Sato A., Takeyasu N., Watanabe S., Aonuma K. Prognostic impact of plaque echolucency in combination with inflammatory biomarkers on cardiovascular outcomes of coronary artery disease patients receiving optimal medical therapy. Atherosclerosis. 2011; 216 (1): 120–124. https://doi.org/10.1016/j.atherosclerosis.2011.01.048

7. Jashari F., Ibrahimi P., Bajraktari G., Grönlund C., Wester P., Henein M.Y. Carotid plaque echogenicity predicts cerebrovascular symptoms: a systematic review and meta-analysis. Eur. J. Neurol. 2016; 23 (7): 1241–1247. https://doi.org/10.1111/ene.13017

8. Genkel V.V., Kuznetsova A.S., Lebedev E.V., Salashenko A.O., Savochkina A.Y., Sumerkina V.A., Nikushkina K.V., Pykhova L.R., Shaposhnik I.I. Echogenicity of carotid atherosclerotic plaques as a predictor of adverse cardiovascular events in patients 40–64 years old: a prospective study. Radiation diagnostics and therapy. 2023; 14 (3): 39–45. https://doi.org/ 10.22328/2079-5343-2023-14-3-39-45 (In Russian)

9. Ibrahimi P., Jashari F., Bajraktari G., Wester P., Henein M.Y. Ultrasound assessment of carotid plaque echogenicity response to statin therapy: a systematic review and meta-analysis. Int. J. Mol. Sci. 2015; 16 (5): 10734–10747. https://doi.org/10.3390/ijms160510734

10. Kadoglou N.P.E., Sailer N., Moumtzouoglou A., Kapelouzou A., Gerasimidis T., Liapis C.D. Aggressive lipid-lowering is more effective than moderate lipid-lowering treatment in carotid plaque stabilization. J. Vasc. Surg. 2010; 51 (1): 114–121. https://doi.org/10.1016/j.jvs.2009.07.119

11. Marchione P., Vento C., Morreale M., Izzo C., Maugeri A., Manuppella F., Romeo T., Giacomini P. Atorvastatin treatment and carotid plaque morphology in first-ever atherosclerotic transient ischemic attack/stroke: a case-control study. J. Stroke. Cerebrovasc. Dis. 2015; 24 (1): 138–143. https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.08.006

12. Kozlov SG, Khamchieva LS, Pogorelova OA, Tripoten’ MI, Balakhonova TV. Dynamics of asymptomatic atherosclerosis of carotid arteries depending on the achieved level of cholesterol in moderate-risk patients. Angiology and Vascular Surgery. 2018; 24 (2): 11–18. (In Russian)

13. Pogorelova O.A., Tripoten M.I., Guchaeva D.A., Shahnovich R.M., Ruda M.Y., Balakhonova T.V. Carotid Plaque Instability in Patients With Acute Coronary Syndrome as Assessed by Ultrasound Duplex Scanning. Kardiologiia. 2017; 57 (12): 5–15. https://doi.org/10.18087/cardio.2017.12.10061 (In Russian)

14. Diagnosis and correction of lipid metabolism disorders for the prevention and treatment of atherosclerosis. Russian Journal of Cardiology. 2012; 0 (4s1): 4–32. https://doi.org/10.15829/1560-4071-2012-4s1 (In Russan)

15. Touboul P.J., Hennerici M.G., Meairs S., Adams H., Amarenco P., Bornstein N., Csiba L., Desvarieux M., Ebrahim S., Hernandez Hernandez R., Jaff M., Kownator S., Naqvi T., Prati P., Rundek T., Sitzer M., Schminke U., Tardif J.C., Taylor A., Vicaut E., Woo K.S. Mannheim carotid intima-media thickness and plaque consensus (2004–2006–2011). An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovasc. Dis. 2012; 34 (4): 290–296. https://doi.org/10.1159/000343145

16. Sabetai M.M., Tegos T.J., Nicolaides A.N., Dhanjil S., Pare G.J., Stevens J.M. Reproducibility of computer-quantified carotid plaque echogenicity: can we overcome the subjectivity? Stroke. 2000; 31 (9): 2189–2196. https://doi.org/10.1016/s0741-5214(00)70066-8

17. Tripoten M.I., Pogorelova O.A., Khamchieva L.Sh., Kolos I.P., Shishkina V.S., Arhipov I.V., Gavrilov A.V., Rogoza A.N., Balakhonova T.V. Gray-scale median analysis in assessment of carotid arteries atheroscl nhjmkerotic plaques and its clinical value. Ultrasound and Functional Diagnostics. 2017; 1: 54–64. (In Russian)

18. Picano E., Paterni M. Ultrasound tissue characterization of vulnerable atherosclerotic plaque. Int. J. Mol. Sci. 2015; 16 (5): 10121–10133. https://doi.org/10.3390/ijms160510121

19. Ibrahimi P., Jashari F., Johansson E., Gronlund C., Bajraktari G., Wester P., Henein M.Y. Vulnerable plaques in the contralateral carotid arteries in symptomatic patients: a detailed ultrasound analysis. Atherosclerosis. 2014; 235 (2): 526–31. https://doi.org/10.1016/j.atherosclerosis.2014.05.934

20. Sztajzel R.F., Engelter S.T., Bonati L.H., Mono M.L., Slezak A., Kurmann R., Nedeltchev K., Gensicke H., Traenka C., Baumgartner R.W., Bonvin C., Hirt L., Medlin F., Burow A., Kägi G., Kapauer M., Vehoff J., Lovblad K.O., Curtin F., Lyrer P.A. Carotid plaque surface echogenicity predicts cerebrovascular events: An Echographic Multicentric Swiss Study. J. Neuroimaging. 2022; 32 (6): 1142–1152. https://doi.org/ 10.1111/jon.13026

21. Honda O., Sugiyama S., Kugiyama K., Fukushima H., Nakamura S., Koide S., Kojima S., Hirai N., Kawano H., Soejima H., Sakamoto T., Yoshimura M., Ogawa H. Echolucent carotid plaques predict future coronary events in patients with coronary artery disease. J. Am. Coll. Cardiol. 2004; 43 (7):1177–1184. https://doi.org/ 10.1016/j.jacc.2003.09.063

22. Johnsen S.H., Mathiesen E.B., Joakimsen O., Stensland E., Wilsgaard T., Løchen M.L., Njølstad I., Arnesen E. Carotid atherosclerosis is a stronger predictor of myocardial infarction in women than in men: a 6-year follow-up study of 6226 persons: the Tromsø Study. Stroke. 2007; 38 (11): 2873–2880. https://doi.org/ 10.1161/STROKEAHA.107.487264

23. Reiter M., Effenberger I., Sabeti S., Mlekusch W., Schlager O., Dick P., Puchner S., Amighi J., Bucek R.A., Minar E., Schillinger M. Increasing carotid plaque echolucency is predictive of cardiovascular events in high-risk patients. Radiology. 2008; 248 (3): 1050–1055. https://doi.org/ 10.1148/radiol.2483071817

24. Grogan J.K., Shaalan W.E., Cheng H., Gewertz B., Desai T., Schwarze G., Glagov S., Lozanski L., Griffin A., Castilla M., Bassiouny H.S. B-mode ultrasonographic characterization of carotid atherosclerotic plaques in symptomatic and asymptomatic patients. J. Vasc. Surg. 2005; 42 (3): 435–41. https://doi.org/ 10.1016/j.jvs.2005.05.033

25. El-Barghouty N.M., Levine T., Ladva S., Flanagan A., Nicolaides A. Histological verification of computerised carotid plaque characterisation. Eur. J. Vasc. Endovasc. Surg. 1996; 11 (4): 414–416. https://doi.org/ 10.1016/s1078-5884(96)80172-9

26. Kadoglou N.P.E., Gerasimidis T., Moumtzouoglou A., Kapelouzou A., Sailer N., Fotiadis G., Vitta I., Katinios A., Kougias P., Bandios S., Voliotis K., Karayannacos P.E., Liapis C.D. Intensive lipid-lowering therapy ameliorates novel calcification markers and GSM score in patients with carotid stenosis. Eur. J. Vasc. Endovasc. Surg. 2008; 35 (6): 661–668. https://doi.org/ 10.1016/j.ejvs.2007.12.011

27. Polonskaya Y.V., Kashtanova E.V., Stakhneva E.M., Sadovsky E.V., Ragino Yu.I. The role of metalloproteinases and tissue inhibitors of metalloproteinases in the development of coronary atherosclerosis. Atherosclerosis. 2021; 17 (3): 76–78. https://doi.org/ 10.52727/2078-256X-2021-17-3-76-78 (In Russian)

28. Urbak L., Sandholt B., Græbe M., Bang L.E., Bundgaard H., Sillesen H. Echolucent Carotid Plaques Becomes More Echogenic over Time - A 3D Ultrasound Study. Ann. Vasc. Surg. 2022; 84: 137–147. https://doi.org/ 10.1016/j.ejvs.2007.12.011

29. Noyes A.M., Thompson P.D. A systematic review of the time course of atherosclerotic plaque regression. Atherosclerosis. 2014; 234 (1): 75–84. http://dx.doi.org/10.1016/j.atherosclerosis.2014.02.007

30. Spence J.D. Uses of ultrasound in stroke prevention. Cardiovasc. Diagn. Ther. 2020; 10 (4): 955–964. https://doi.org/ 10.21037/cdt.2019.12.12

31. Ariyoshi K., Okuya S., Kunitsugu I., Matsunaga K., Nagao Y., Nomiyama R., Takeda K., Tanizawa Y. Ultrasound analysis of gray-scale median value of carotid plaques is a useful reference index for cerebro-cardiovascular events in patients with type 2 diabetes. J. Diabetes. Investig. 2015; 6 (1): 91–97. http://doi: 10.1111/jdi.12242

32. Nicolaides A.N., Kakkos S.K., Kyriacou E., Griffin M., Sabetai M., Thomas D.J., Tegos T., Geroulakos G., Labropoulos N., Doré C.J., Morris T.P., Naylor R., Abbott A.L., Asymptomatic Carotid Stenosis and Risk of Stroke (ACSRS) Study Group. Asymptomatic internal carotid artery stenosis and cerebrovascular risk stratification. J. Vasc. Surg. 2010; 52 (6): 1486–1496.e1-5. http://doi:10.1016/j.jvs.2010.07.021

33.

34.


Supplementary files

Review

For citations:


Pogorelova O.A., Tripoten M.A., Hamchieva L.Sh., Guchaeva D.A., Kozlov S.G., Shakhnovich R.M., Balakhonova T.V. Echogenicity of atherosclerotic plaque - a criterion for assessing the dynamics and prognosis of cardiovascular diseases. Ultrasound & Functional Diagnostics. 2023;(4):35-48. (In Russ.) https://doi.org/10.24835/1607-0771-2023-4-35-48

Views: 2142


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-0771 (Print)
ISSN 2408-9494 (Online)