Echogenicity of atherosclerotic plaque - a criterion for assessing the dynamics and prognosis of cardiovascular diseases
https://doi.org/10.24835/1607-0771-2023-4-35-48
Abstract
Aim: to measure the echogenicity of atherosclerotic plaques (AP) of carotid arteries to assess the dynamics of atherosclerosis and risk of cardiovascular outcomes (CVO) in patients with different CVD risk.
Materials and methods. The study included 223 patients: 80 patients (47 males) with moderate CVD risk (mean age: 53 years, range: 39-66) (Group 1) and 143 patients (123 males) with acute coronary syndrome (ACS) and high CVD risk (mean age: 57, range: 32-83) years (Group 2). All patients were examined at the Chazov National Medical Research Center of Cardiology. Patients underwent a standard clinical examination, biochemical blood test with lipid profile determination, and ultrasound duplex scanning. Patients with ACS were re-examined after 1-1.5 years and patients with moderate CVD risk were re-examined after 1 and 7 years.
Results. We analyzed 181 APs in Group 1 and 378 APs in Group 2. Analysis of gray-scale median (GSM) at the first and second visit showed a significant increase in GSM in both groups: from 67.02 [54.13; 82.85] to 73.5 [59.5; 88.7] (p<0.0001) in Group 1, and from 49.3 [39.73;63.64] to 50.7 [40.04;66.54] (p<0.05) in Group 2. An increase in GSM was observed in 79% of patients in Group 1, in 53% of patients in Group 2. Unfavorable CVO (CVO+) developed after 7 years in 7 (8.8%) patients in Group 1, and after 1 year in 23 (23%) patients in Group 2. In Group 1, an increase in GSM was observed only in patients with favorable prognosis (CVO-): from 67.7[52.13; 79.0] to 77.5[64.12; 91.0] (n=148 AP, p<0.05), in patients with CVO+, GSM increased non-significantly from 60.1[53.5; 66.5] to 66.5[55.0; 71.6] (n=18 AP, p=NS). In Group 2, a significant increase in GSM was observed in patients with CVO-: from 48.7[39.0; 63.4] to 51.3[40.0; 67.4] (n=141 AP, p<0.01), in patients with CVO+, GSM decreased from 51.6[42.9; 72.5] to 50.2[40.4; 65.0] (n=43 AP, p=NS). In Group 2, GSM significantly increased by 2.75 (6.05%) from the initial value (p<0.05) in patients with CVO-, while patients with CVO+ showed a significant decrease in the average GSM of AP by 3.33 (7.8%) (p<0.05). Using ROC analysis, a Δ% GSM value of 6.96% was found (area under the curve 0.628 ± 0.0465 [95% CI 0.556 - 0.696], p = 0.0058). According to Cox regression analysis, the risk of CVO increased by 2.16 times with a decrease in GSM AP in the carotid arteries over time by ≥ 6.96% (НR=2.16; 95% CI=1.331 – 3.507); p=0.009.
Conclusion. The ultrasound method of measuring the echogenicity of an atherosclerotic plaque of the carotid artery using GSM parameter can be effective for assessing the dynamics of atherosclerosis and prognosis of adverse cardiovascular events in patients with high and moderate CVD risk
Keywords
About the Authors
O. A. PogorelovaRussian Federation
Olga A. Pogorelova – Cand. of Sci. (Med.), Senior Researcher, Vascular ultrasound laboratory, National medical research centre of cardiology named after academician E.I. Chazov of the Ministry of Healthcare of the Russian Federation, Moscow.
M. A. Tripoten
Russian Federation
Maria A. Tripoten – Cand. of Sci. (Med.), Senior Researcher, Vascular ultrasound laboratory, National medical research centre of cardiology named after academician E.I. Chazov of the Ministry of Healthcare of the Russian Federation, Moscow.
L. Sh. Hamchieva
Russian Federation
Leila Sh. Khamchieva – Cand. of Sci. (Med.), Junior Researcher, Vascular ultrasound laboratory, National medical research centre of cardiology named after academician E.I. Chazov of the Ministry of Healthcare of the Russian Federation, Moscow.
D. A. Guchaeva
Russian Federation
Dinara A. Guchaeva – Cand. of Sci. (Med.), cardiologist, Emergency cardiology department, National medical research centre of cardiology named after academician E.I. Chazov of the Ministry of Healthcare of the Russian Federation, Moscow.
S. G. Kozlov
Russian Federation
Sergey G. Kozlov – Doct. of Sci. (Med.), Senior Researcher, Atherosclerosis department, National medical research centre of cardiology named after academician E.I. Chazov of the Ministry of Healthcare of the Russian Federation, Moscow.
R. M. Shakhnovich
Russian Federation
Roman M. Shakhnovich – Doct. of Sci. (Med.), Professor, The institute of advanced training of higher qualification levels, National medical research centre of cardiology named after academician E.I. Chazov of the Ministry of Healthcare of the Russian Federation, Moscow.
T. V. Balakhonova
Russian Federation
Tatyana V. Balakhonova – Doct. of Sci. (Med.), Professor, Chief Researcher, Head of Vascular ultrasound laboratory, National medical research centre of cardiology named after academician E.I. Chazov of the Ministry of Healthcare of the Russian Federation, Moscow.
References
1. Saba L., Brinjikji W., Spence J.D., Wintermark M., Castillo M., de Borst G.J., Yang Q., Yuan C., Buckler A., Edjlali M., Saam T., Saloner D., Lal B.K., Capodanno D., Sun J., Balu N., Naylor R., Lugt A.V.D., Wasserman B.A., Kooi M.E., Wardlaw J., Gillard J., Lanzino G., Hedin U., Mikulis D., Gupta A., DeMarco J.K., Hess C., Goethem J.V., Hatsukami T., Rothwell P., Brown M.M., Moody A.R. Roadmap Consensus on Carotid Artery Plaque Imaging and Impact on Therapy Strategies and Guidelines: An International, Multispecialty, Expert Review and Position Statement. Am. J. Neuroradiol. 2021; 42 (9): 1566–1575. https://doi.org/10.1016/j.jvssci.2021.03.001
2. Migdalski A., Jawien A. New insight into biology, molecular diagnostics and treatment options of unstable carotid atherosclerotic plaque: a narrative review. Ann. Transl. Med. 2021; 9 (14): 1207. https://doi.org/10.21037/atm-20-7197
3. Saba L., Cau R., Murgia A., Nicolaides A.N., Wintermark M., Castillo M., Staub D., Kakkos S.K., Yang Q., Paraskevas K.I., Yuan C., Edjlali M., Sanfilippo R., Hendrikse J., Johansson E., Mossa-Basha M., Balu N., Dichgans M., Saloner D., Bos D., Jager H.R., Naylor R., Faa G., Suri J.S., Costello J., Auer D.P., Mcnally J.S., Bonati L.H., Nardi V., van der Lugt A., Griffin M., Wasserman B.A., Kooi M.E., Gillard J., Lanzino G., Mikhailidis D.P., Mandell D.M., Benson J.C., van Dam-Nolen D.H.K., Kopczak A., Song J.W., Gupta A., DeMarco J.K., Chaturvedi S., Virmani R., Hatsukami T.S., Brown M., Moody A.R., Libby P., Schindler A., Saam T. Carotid Plaque-RADS: A Novel Stroke Risk Classification System. JACC Cardiovasc. Imaging. 2024; 17 (1): 62–75. https://doi.org/10.1016/j.jcmg.2023.09.005
4. Mitchell C. Grayscale Analysis of Carotid Plaque: An Overview. J. Am. Soc. Echocardiogr. 2019; 32 (8): A21–22. https://doi.org/10.1016/j.echo.2019.06.007
5. Kadoglou N.P., Khattab E., Velidakis N., Patsourakos N., Lambadiari V. A new approach of statin therapy in carotid atherosclerosis: Targeting indices of plaque vulnerability on the top of lipid-lowering. A narrative review. Kardiol Pol. 2022; 80 (9): 880–890. https://doi.org/ 10.33963/KP.a2022.0155
6. Ishizu T., Seo Y., Machino T., Kawamura R., Kimura T., Murakoshi N., Sato A., Takeyasu N., Watanabe S., Aonuma K. Prognostic impact of plaque echolucency in combination with inflammatory biomarkers on cardiovascular outcomes of coronary artery disease patients receiving optimal medical therapy. Atherosclerosis. 2011; 216 (1): 120–124. https://doi.org/10.1016/j.atherosclerosis.2011.01.048
7. Jashari F., Ibrahimi P., Bajraktari G., Grönlund C., Wester P., Henein M.Y. Carotid plaque echogenicity predicts cerebrovascular symptoms: a systematic review and meta-analysis. Eur. J. Neurol. 2016; 23 (7): 1241–1247. https://doi.org/10.1111/ene.13017
8. Genkel V.V., Kuznetsova A.S., Lebedev E.V., Salashenko A.O., Savochkina A.Y., Sumerkina V.A., Nikushkina K.V., Pykhova L.R., Shaposhnik I.I. Echogenicity of carotid atherosclerotic plaques as a predictor of adverse cardiovascular events in patients 40–64 years old: a prospective study. Radiation diagnostics and therapy. 2023; 14 (3): 39–45. https://doi.org/ 10.22328/2079-5343-2023-14-3-39-45 (In Russian)
9. Ibrahimi P., Jashari F., Bajraktari G., Wester P., Henein M.Y. Ultrasound assessment of carotid plaque echogenicity response to statin therapy: a systematic review and meta-analysis. Int. J. Mol. Sci. 2015; 16 (5): 10734–10747. https://doi.org/10.3390/ijms160510734
10. Kadoglou N.P.E., Sailer N., Moumtzouoglou A., Kapelouzou A., Gerasimidis T., Liapis C.D. Aggressive lipid-lowering is more effective than moderate lipid-lowering treatment in carotid plaque stabilization. J. Vasc. Surg. 2010; 51 (1): 114–121. https://doi.org/10.1016/j.jvs.2009.07.119
11. Marchione P., Vento C., Morreale M., Izzo C., Maugeri A., Manuppella F., Romeo T., Giacomini P. Atorvastatin treatment and carotid plaque morphology in first-ever atherosclerotic transient ischemic attack/stroke: a case-control study. J. Stroke. Cerebrovasc. Dis. 2015; 24 (1): 138–143. https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.08.006
12. Kozlov SG, Khamchieva LS, Pogorelova OA, Tripoten’ MI, Balakhonova TV. Dynamics of asymptomatic atherosclerosis of carotid arteries depending on the achieved level of cholesterol in moderate-risk patients. Angiology and Vascular Surgery. 2018; 24 (2): 11–18. (In Russian)
13. Pogorelova O.A., Tripoten M.I., Guchaeva D.A., Shahnovich R.M., Ruda M.Y., Balakhonova T.V. Carotid Plaque Instability in Patients With Acute Coronary Syndrome as Assessed by Ultrasound Duplex Scanning. Kardiologiia. 2017; 57 (12): 5–15. https://doi.org/10.18087/cardio.2017.12.10061 (In Russian)
14. Diagnosis and correction of lipid metabolism disorders for the prevention and treatment of atherosclerosis. Russian Journal of Cardiology. 2012; 0 (4s1): 4–32. https://doi.org/10.15829/1560-4071-2012-4s1 (In Russan)
15. Touboul P.J., Hennerici M.G., Meairs S., Adams H., Amarenco P., Bornstein N., Csiba L., Desvarieux M., Ebrahim S., Hernandez Hernandez R., Jaff M., Kownator S., Naqvi T., Prati P., Rundek T., Sitzer M., Schminke U., Tardif J.C., Taylor A., Vicaut E., Woo K.S. Mannheim carotid intima-media thickness and plaque consensus (2004–2006–2011). An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovasc. Dis. 2012; 34 (4): 290–296. https://doi.org/10.1159/000343145
16. Sabetai M.M., Tegos T.J., Nicolaides A.N., Dhanjil S., Pare G.J., Stevens J.M. Reproducibility of computer-quantified carotid plaque echogenicity: can we overcome the subjectivity? Stroke. 2000; 31 (9): 2189–2196. https://doi.org/10.1016/s0741-5214(00)70066-8
17. Tripoten M.I., Pogorelova O.A., Khamchieva L.Sh., Kolos I.P., Shishkina V.S., Arhipov I.V., Gavrilov A.V., Rogoza A.N., Balakhonova T.V. Gray-scale median analysis in assessment of carotid arteries atheroscl nhjmkerotic plaques and its clinical value. Ultrasound and Functional Diagnostics. 2017; 1: 54–64. (In Russian)
18. Picano E., Paterni M. Ultrasound tissue characterization of vulnerable atherosclerotic plaque. Int. J. Mol. Sci. 2015; 16 (5): 10121–10133. https://doi.org/10.3390/ijms160510121
19. Ibrahimi P., Jashari F., Johansson E., Gronlund C., Bajraktari G., Wester P., Henein M.Y. Vulnerable plaques in the contralateral carotid arteries in symptomatic patients: a detailed ultrasound analysis. Atherosclerosis. 2014; 235 (2): 526–31. https://doi.org/10.1016/j.atherosclerosis.2014.05.934
20. Sztajzel R.F., Engelter S.T., Bonati L.H., Mono M.L., Slezak A., Kurmann R., Nedeltchev K., Gensicke H., Traenka C., Baumgartner R.W., Bonvin C., Hirt L., Medlin F., Burow A., Kägi G., Kapauer M., Vehoff J., Lovblad K.O., Curtin F., Lyrer P.A. Carotid plaque surface echogenicity predicts cerebrovascular events: An Echographic Multicentric Swiss Study. J. Neuroimaging. 2022; 32 (6): 1142–1152. https://doi.org/ 10.1111/jon.13026
21. Honda O., Sugiyama S., Kugiyama K., Fukushima H., Nakamura S., Koide S., Kojima S., Hirai N., Kawano H., Soejima H., Sakamoto T., Yoshimura M., Ogawa H. Echolucent carotid plaques predict future coronary events in patients with coronary artery disease. J. Am. Coll. Cardiol. 2004; 43 (7):1177–1184. https://doi.org/ 10.1016/j.jacc.2003.09.063
22. Johnsen S.H., Mathiesen E.B., Joakimsen O., Stensland E., Wilsgaard T., Løchen M.L., Njølstad I., Arnesen E. Carotid atherosclerosis is a stronger predictor of myocardial infarction in women than in men: a 6-year follow-up study of 6226 persons: the Tromsø Study. Stroke. 2007; 38 (11): 2873–2880. https://doi.org/ 10.1161/STROKEAHA.107.487264
23. Reiter M., Effenberger I., Sabeti S., Mlekusch W., Schlager O., Dick P., Puchner S., Amighi J., Bucek R.A., Minar E., Schillinger M. Increasing carotid plaque echolucency is predictive of cardiovascular events in high-risk patients. Radiology. 2008; 248 (3): 1050–1055. https://doi.org/ 10.1148/radiol.2483071817
24. Grogan J.K., Shaalan W.E., Cheng H., Gewertz B., Desai T., Schwarze G., Glagov S., Lozanski L., Griffin A., Castilla M., Bassiouny H.S. B-mode ultrasonographic characterization of carotid atherosclerotic plaques in symptomatic and asymptomatic patients. J. Vasc. Surg. 2005; 42 (3): 435–41. https://doi.org/ 10.1016/j.jvs.2005.05.033
25. El-Barghouty N.M., Levine T., Ladva S., Flanagan A., Nicolaides A. Histological verification of computerised carotid plaque characterisation. Eur. J. Vasc. Endovasc. Surg. 1996; 11 (4): 414–416. https://doi.org/ 10.1016/s1078-5884(96)80172-9
26. Kadoglou N.P.E., Gerasimidis T., Moumtzouoglou A., Kapelouzou A., Sailer N., Fotiadis G., Vitta I., Katinios A., Kougias P., Bandios S., Voliotis K., Karayannacos P.E., Liapis C.D. Intensive lipid-lowering therapy ameliorates novel calcification markers and GSM score in patients with carotid stenosis. Eur. J. Vasc. Endovasc. Surg. 2008; 35 (6): 661–668. https://doi.org/ 10.1016/j.ejvs.2007.12.011
27. Polonskaya Y.V., Kashtanova E.V., Stakhneva E.M., Sadovsky E.V., Ragino Yu.I. The role of metalloproteinases and tissue inhibitors of metalloproteinases in the development of coronary atherosclerosis. Atherosclerosis. 2021; 17 (3): 76–78. https://doi.org/ 10.52727/2078-256X-2021-17-3-76-78 (In Russian)
28. Urbak L., Sandholt B., Græbe M., Bang L.E., Bundgaard H., Sillesen H. Echolucent Carotid Plaques Becomes More Echogenic over Time - A 3D Ultrasound Study. Ann. Vasc. Surg. 2022; 84: 137–147. https://doi.org/ 10.1016/j.ejvs.2007.12.011
29. Noyes A.M., Thompson P.D. A systematic review of the time course of atherosclerotic plaque regression. Atherosclerosis. 2014; 234 (1): 75–84. http://dx.doi.org/10.1016/j.atherosclerosis.2014.02.007
30. Spence J.D. Uses of ultrasound in stroke prevention. Cardiovasc. Diagn. Ther. 2020; 10 (4): 955–964. https://doi.org/ 10.21037/cdt.2019.12.12
31. Ariyoshi K., Okuya S., Kunitsugu I., Matsunaga K., Nagao Y., Nomiyama R., Takeda K., Tanizawa Y. Ultrasound analysis of gray-scale median value of carotid plaques is a useful reference index for cerebro-cardiovascular events in patients with type 2 diabetes. J. Diabetes. Investig. 2015; 6 (1): 91–97. http://doi: 10.1111/jdi.12242
32. Nicolaides A.N., Kakkos S.K., Kyriacou E., Griffin M., Sabetai M., Thomas D.J., Tegos T., Geroulakos G., Labropoulos N., Doré C.J., Morris T.P., Naylor R., Abbott A.L., Asymptomatic Carotid Stenosis and Risk of Stroke (ACSRS) Study Group. Asymptomatic internal carotid artery stenosis and cerebrovascular risk stratification. J. Vasc. Surg. 2010; 52 (6): 1486–1496.e1-5. http://doi:10.1016/j.jvs.2010.07.021
33.
34.
Supplementary files
Review
For citations:
Pogorelova O.A., Tripoten M.A., Hamchieva L.Sh., Guchaeva D.A., Kozlov S.G., Shakhnovich R.M., Balakhonova T.V. Echogenicity of atherosclerotic plaque - a criterion for assessing the dynamics and prognosis of cardiovascular diseases. Ultrasound & Functional Diagnostics. 2023;(4):35-48. (In Russ.) https://doi.org/10.24835/1607-0771-2023-4-35-48