Вихревые турбулентные потоки и скручивание левого желудочка у детей в возрасте от одного года до пяти лет, рожденных недоношенными с низкой, очень низкой и экстремально низкой массой тела
https://doi.org/10.24835/1607-0771-2021-4-38-56
Аннотация
Об авторах
Е. Н. ПавлюковаРоссия
М. В. Колосова
Россия
Г. В. Неклюдова
Россия
Р. С. Карпов
Россия
Список литературы
1. Nyrnes S.A., Fadnes S., Wigen M.S., Mertens L., Lovstakken L. Blood speckle-tracking based on high-frame rate ultrasound imaging in pediatric cardiology. J. Am. Soc. Echocardiogr. 2020; 33 (4): 493-503.e5. https://doi.org/10.1016/j.echo.2019.11.003
2. Pedrizzetti G., Martiniello A.R., Bianchi V., D’Onofrio A., Caso P., Tonti G. Cardiac fluid dynamics anticipates heart adaptation. J. Biomech. 2015; 48 (2): 388-391. https://doi.org/10.1016/j.jbiomech.2014.11.049
3. Сандриков В.А., Дземешкевич С.Л., Кулагина Т.Ю., Ятченко А.Н., Ван Е.Ю. Неинвазивная регистрация турбулентных потоков в левом желудочке. Хирургия.Журнал им.Н.И.Пирогова. 2013; 2: 45-48.
4. De Waal K., Phad N., Collins N., Boyle A. Cardiac remodeling in preterm infants with prolonged exposure to a patent ductus arteriosus. Congenit. Heart Dis. 2017; 12 (3): 364-372.
5. Arvidsson P.M., Kovacs S.J., Toger J., Borgquist R., Heiberg E., Carlsson M., Arheden H. Vortex ring behavior provides the epigenetic blue-print for the human heart. Sci. Rep. 2016; 6: 22021. https://doi.org/10.1038/srep22021
6. Bermejo J., Benito Y., Alhama M., Yotti R., Martinez-Legazpi P., Del Villar C.P., Perez- David E., Gonzalez-Mansilla A., Santa-Marta C., Barrio A., Fernandez-Aviles F., Del Alamo J.C.Intraventricular vortex properties in nonischemic dilated cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 2014; 306 (5): H718-H729. https://doi.org/10.1152/ajpheart.00697.2013
7. Abe H., Caracciolo G., Kheradvar A., Pedrizzetti G., Khandheria B.K., Narula J., Sengupta P.P. Contrast echocardiography for assessing left ventricular vortex strength in heart failure: a prospective cohort study. Eur. Heart J. Cardiovasc. Imaging. 2013; 14 (11): 1049-1060. https://doi.org/10.1093/ehjci/jet049
8. Сандриков В.А., Кулагина Т.Ю., Крылов А.С., Ятченко А.М. Потоки крови в левом желудочке как предикторы дисфункции миокарда у больных дилатационной кардиомиопатией. Российский кардиологический журнал. 2014; 5: 7-12. https://doi.org/10.15829/1560-4071-2014-5-7-12
9. Matsuura K., Shiraishi K., Sato K., Shimada K., Goya S., Uemura A., Ifuku M., Iso T., Takahashi K., Tanaka R. Left ventricular vortex and intraventricular pressure difference in dogs under various loading conditions. Am. J. Physiol. Heart Circ. Physiol. 2019; 316 (4): H882-H888. https://doi.org/10.1152/ajpheart.00686.2018
10. Carr H., Cnattingius S., Granath F., Ludvigsson J.F., Edstedt Bonamy A.K. Preterm birth and risk of heart failure up to early adulthood. J. Am. Coll. Cardiol. 2017; 69 (21): 2634-2642. https://doi.org/10.1016Zj.jacc.2017.03.572
11. Dabiri J.O., Gharib M. The role of optimal vortex formation in biological fluid transport. Proc. Biol. Sci. 2005; 272 (1572): 1557-1560. https://doi.org/10.1098/rspb.2005.3109
12. Gharib M., Rambod E., Kheradvar A., Sahn D.J., Dabiri J.O. Optimal vortex formation as an index of cardiac health. Proc. Natl. Acad. Sci. USA. 2006; 103 (16): 6305-6308. https://doi.org/10.1073/pnas.0600520103
13. Stugaard M., Koriyama H., Katsuki K., Masuda K., Asanuma T., Takeda Y., Sakata Y., Itatani K., Nakatani S. Energy loss in the left ventricle obtained by vector flow mapping as a new quantitative measure of severity of aortic regurgitation: a combined experimental and clinical study. Eur. Heart J. Cardiovasc. Imaging. 2015; 16 (7): 723730. https://doi.org/10.1093/ehjci/jev035
14. Schafer M., Humphries S., Stenmark K.R., Kheyfets V.O., Buckner J.K., Hunter K.S., Fenster B.E. 4D-flow cardiac magnetic resonancederived vorticity is sensitive marker of left ventricular diastolic dysfunction in patients with mild-to-moderate chronic obstructive pulmonary disease. Eur. Heart J. Cardiovasc. Imaging. 2018; 19 (4): 415-424. https://doi.org/10.1093/ehjci/jex069
15. Fadnes S., Nyrnes S.A., Torp H., Lovstakken L. Shunt flow evaluation in congenital heart disease based on two-dimensional speckle tracking. Ultrasound Med. Biol. 2014; 40 (10): 2379-2391. https://doi.org/10.1016/j.ultrasmedbio.2014.03.029
16. Fadnes S., Wigen M.S., Nyrnes S.A., Lovstakken L. In vivo intracardiac vector flow imaging using phased array transducers for pediatric cardiology. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2017; 64 (9): 1318-1326. https://doi.org/10.1109/tuffc.2017.2689799
17. Павлюкова Е.Н., Колосова М.В., Унашева А.И., Карпов Р.С. Ротация и скручивание левого желудочка у здоровых детей и подростков, рожденных доношенными. Ультразвуковая и функциональная диагностика. 2017; 1: 39-53.
18. Павлюкова Е.Н., Колосова М.В., Неклюдова Г.В., Карпов Р.С. Механика левого желудочка у детей в возрасте от одного года до пяти лет, рожденных с очень низкой и экстремально низкой массой тела. Ультразвуковая и функциональная диагностика. 2020; 3: 74-90. https://doi.org/10.24835/1607-0771-2020-3-74-90
19. Lang R.M., Badano L.P., Mor-Avi V., Afilalo J., Armstrong A., Ernande L., Flachskampf F.A., Foster E., Goldstein S.A., Kuznetsova T., Lancellotti P., Muraru D., Picard M.H., Rietzschel E.R., Rudski L., Spencer K.T., Tsang W., Voigt J.U. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging. 2015; 16 (3): 233-270. https://doi.org/10.1093/ehjci/jev014
20. Sommer G., Schriefl A.J., Andra M., Sacherer M., Viertler C., Wolinski H., Holzapfel G.A. Biomechanical properties and microstructure of human ventricular myocardium. Acta Biomater. 2015; 24: 172-192. https://doi.org/10.1016/j.actbio.2015.06.031
21. Багаев С.Н., Захаров В.Н., Орлов В.А. О необходимости винтового движения крови. Российский журнал биомеханики. 2002; 6 (4): 30-51.
22. Михайлов С.Б. Клиническая анатомия сердца. М.: Медицина, 1987. 288 с.
23. Cox D.J., Bai W., Price A.N., Edwards A.D., Rueckert D., Groves A.M. Ventricular remodeling in pre term infants: computational cardiac magnetic resonance atlasing shows significant early remodeling of the left ventricle. Pediatr. Res. 2019; 85 (6): 807-815. https://doi.org/10.1038/s41390-018-0171-0
24. Kulkarni A., Morisawa D., Gonzalez D., Kheradvar A. Age-related changes in diastolic function in children: Echocardiographic association with vortex formation time. Echocardiography. 2019; 36 (10): 1869-1875. https://doi.org/10.1111/echo.14479
25. Моталин С.Б. Формирование системы обеспечения закрученных потоков крови на этапах онтогенеза: Дис.. докт. мед. наук. Астрахань: Астраханская государственная медицинская академия, 2005.
26. Ромбальская А.Р. К вопросу о строении мясистых трабекул сердца человека. Медицинский журнал. 2008;4:117-120.
27. Jolley M.A., Ghelani S.J., Adar A., Harrild D.M. Three-dimensional mitral valve morphology and age-related trends in children and young adults with structurally normal hearts using transthoracic echocardiography. J. Am. Soc. Echocardiogr. 2017; 30 (6): 561-571. https://doi.org/10.1016/j.echo.2017.01.018
28. Jolley M.A., Hammer P.E., Ghelani S.J., Adar A., Sleeper L.A., Lacro R.V., Marx G.R., Nathan M., Harrild D.M. Three-dimensional mitral valve morphology in children and young adults with Marfan syndrome. J. Am. Soc. Echocardiogr. 2018; 31 (11): 1168-1177.e1. https://doi.org/10.1016/j.echo.2018.06.009
29. Saremi F., Sanchez-Quintana D., Mori S., Muresian H., Spicer D.E., Hassani C., Anderson R.H. Fibrous skeleton of the heart: anatomic overview and evaluation of pathologic conditions with CT and MR imaging. Radiographics. 2017; 37 (5): 13301351. https://doi.org/10.1148/rg.2017170004
30. Oliveira D., Srinivasan J., Espino D., Buchan K., Dawson D., Shepherd D. Geometric description for the anatomy of the mitral valve: A review. J. Anat. 2020; 237 (2): 209-224. https://doi.org/10.1111/joa.13196
31. Seo J.H., Vedula V., Abraham T., Lardo A., Dawoud F., Luo H., Mittal R. Effect of the mitral valve on diastolic flow patterns. Phys. Fluids. 2014; 26(12): 121901. https://doi.org/10.1063/1.4904094
32. Smerup M., Nielsen E., Agger P., Frandsen J., Vestergaard-Poulsen P., Andersen J., Nyengaard J., Pedersen M., Ringgaard S., Hjortdal V., Lunkenheimer P.P., Anderson R.H. The three-dimensional arrangement of the myocytes aggregated together within the mammalian ventricular myocardium. Anat. Rec. (Hoboken). 2009; 292 (1): 1-11. https://doi.org/10.1002/ar.20798
33. Sanchez-Quintana D., Garcia-Martinez V., Climent V., Hurle J.M. Morphological changes in the normal pattern of ventricular myoarchitecture in the developing human heart. Anat. Rec. 1995; 243 (4): 483-495. https://doi.org/10.1002/ar.1092430411
34. Przewlocka-Kosmala M., Marwick T.H., Yang H., Wright L., Negishi K., Kosmala W. Association of reduced apical untwisting with incident HF in asymptomatic patients with HF risk factors. JACC Cardiovasc. Imaging. 2020; 13 (1 Pt 2): 187-194. https://doi.org/10.1016Zj.jcmg.2019.01.035
35. Steine K., Stugaard M., Smiseth O.A. Mechanisms of retarded apical filling in acute ischemic left ventricular failure. Circulation. 1999; 99 (15): 20482054. https://doi.org/10.1161/01.cir.99.15.2048
36. Notomi Y., Popovic Z.B., Yamada H., Wallick D.W., Martin M.G., Oryszak S.J., Shiota T., Greenberg N.L., Thomas J.D. Ventricular untwisting: a temporal link between left ventricular relaxation and suction. Am. J. Physiol. Heart Circ. Physiol. 2008; 294 (1): H505-H513. https://doi.org/10.1152/ajpheart.00975.2007
37. Porter G.A. Jr., Hom J., Hoffman D., Quintanilla R., de Mesy Bentley K., Sheu S.S. Bioenergetics, mitochondria, and cardiac myocyte differentiation. Prog. Pediatr. Cardiol. 2011; 31 (2): 75-81. https://doi.org/10.1016/j.ppedcard.2011.02.002
38. Popescu L.M., Curici A., Wang E., Zhang H., Hu S., Gherghiceanu M. Telocytes and putative stem cells in ageing human heart. J. Cell Mol. Med. 2015; 19 (1): 31-45. https://doi.org/10.1111/jcmm.12509
39. Yang X., Pabon L., Murry C.E. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ. Res. 2014; 114 (3): 511-523. https://doi.org/10.1161/circresaha. 114.300558
40. Vreeker A., van Stuijvenberg L., Hund T.J., Mohler P.J., Nikkels P.G., van Veen T.A. Assembly of the cardiac intercalated disk during pre- and postnatal development of the human heart. PLoS One. 2014; 9 (4): e94722. https://doi.org/10.1371/journal.pone.0094722
41. Boselli F., Freund J.B., Vermot J. Blood flow mechanics in cardiovascular development. Cell. Mol. Life Sci. 2015; 72 (13): 2545-2559. https://doi.org/10.1007/s00018-015-1885-3
42. Vedula V., Seo J.H., Lardo A.C., Mittal R. Effect of trabeculae and papillary muscles on the hemodynamics of the left ventricle. Theor.Comput. Fluid Dyn. 2016; 30 (1): 3-21. https://doi.org/10.1007/s00162-015-0349-6
43. Kheradvar A., Assadi R., Falahatpisheh A., Sengupta P.P. Assessment of transmitral vortex formation in patients with diastolic dysfunction. J. Am. Soc. Echocardiogr. 2012; 25 (2): 220-227. doi.org/10.1016/j.echo.2011.10.003
44. Charonko J.J., Kumar R., Stewart K., Little W.C., Vlachos P.P. Vortices formed on the mitral valve tips aid normal left ventricular filling. Ann. Biomed. Eng. 2013; 41 (5): 1049-1061. https://doi.org/10.1007/s10439-013-0755-0
45. Kheradvar A., Rickers C., Morisawa D., Kim M., Hong G.R., Pedrizzetti G. Diagnostic and prognostic significance of cardiovascular vortex formation. J. Cardiol. 2019; 74 (5): 403-411. https://doi.org/10.1016/j.jjcc.2019.05.005
46. Lewandowski A.J. The preterm heart: a unique cardiomyopathy? Pediatr. Res. 2019; 85 (6): 738-739. https://doi.org/10.1038/s41390-019-0301-3
47. Lewandowski A.J., Augustine D., Lamata P., Davis E.F., Lazdam M., Francis J., McCormick K., Wilkinson A.R., Singhal A., Lucas A., Smith N.P., Neubauer S., Leeson P. Preterm heart in adult life: cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function. Circulation. 2013; 127 (2): 197-206. https://doi.org/10.1161/circulationaha. 112.126920
48. Burchert H., Lewandowski A.J. Preterm birth is a novel, independent risk factor for altered cardiac remodeling and early heart failure: is it time for a new cardiomyopathy? Curr. Treat. Options Cardiovasc. Med. 2019; 21 (2): 8. https://doi.org/10.1007/s11936-019-0712-9
49. Daae A.S., Wigen M.S., Fadnes S., Lovstakken L., Stoylen A.Intraventricular vector flow imaging with blood speckle tracking in adults: feasibility, normal physiology and mechanisms in healthy volunteers. Ultrasound Med. Biol. 2021; 47 (12): 3501-3513. https://doi.org/10.1016/j.ultrasmedbio.2021.08.021
50. Pasipoularides A. Mechanotransduction mechanisms for intraventricular diastolic vortex forces and myocardial deformations: part 1. J. Cardiovasc. Transl. Res. 2015; 8 (1): 76-87. https://doi.org/10.1007/s12265-015-9611-y
Рецензия
Для цитирования:
Павлюкова Е.Н., Колосова М.В., Неклюдова Г.В., Карпов Р.С. Вихревые турбулентные потоки и скручивание левого желудочка у детей в возрасте от одного года до пяти лет, рожденных недоношенными с низкой, очень низкой и экстремально низкой массой тела. Ультразвуковая и функциональная диагностика. 2021;(4):38-56. https://doi.org/10.24835/1607-0771-2021-4-38-56
For citation:
Pavlyukova E.N., Kolosova M.V., Neklyudova G.V., Karpov R.S. Vortex flows and left ventricular twist in children aged one to five years old, born prematurely with low, very low, and extremely low birth weight. Ultrasound & Functional Diagnostics. 2021;(4):38-56. (In Russ.) https://doi.org/10.24835/1607-0771-2021-4-38-56