The estimation of left ventricular myocardial work indicators during cardiac ultrasound imaging: methodology, capabilities, advantages and limitations
https://doi.org/10.24835/1607-0771-2023-4-22-34
Abstract
This article is dedicated to the assessment of left ventricular (LV) myocardial work indicators using the method of constructing pressure-strain loops, a new tool in echocardiography that can take into account the influence of cardiac afterload on LV contractility. The algorithm of actions for estimating myocardial work, possible difficulties and features of calculating its main indicators are described in detail, the limitations and disadvantages of the method are discussed. The normal ranges of LV myocardial work indicators are given in the article, and it presents their typical changes and the advantages of using in various diseases and pathological conditions of the heart.
About the Authors
S. I. IvanovRussian Federation
Sergey I. Ivanov – Cand. of Sci. (Med.), doctor of Department of Cardiology, Clinical Hospital of the Presidential Administration of the Russian Federation, Moscow.
S. P. Leschinskaya
Russian Federation
Svetlana P. Leschinskaya — student of Russian University Of Medicine of the Ministry of health of the Russian Federation , Moscow.
M. N. Alekhin
Russian Federation
Mikhail N. Alekhin – Doct. of Sci. (Med.), Professor, Head of Functional Diagnostics Department, Central Clinical Hospital of the Presidential Administration of the Russian Federation;
Professor, Division of Therapy, Cardiology, Functional Diagnostics, and Nephrology, Central State Medical Academy of the Presidential Administration of the Russian Federation, Moscow.
References
1. Suga H. Total mechanical energy of a ventricle model and cardiac oxygen consumption. Am. J. Physiol. 1979; 236 (3): H498–505. http://doi.org/10.1152/ajpheart.1979.236.3.H498
2. Bastos M.B., Burkhoff D., Maly J., Daemen J., den Uil C.A., Ameloot K., Lenzen M., Mahfoud F., Zijlstra F., Schreuder J.J., Van Mieghem N.M. Invasive left ventricle pressure-volume analysis: overview and practical clinical implications. Eur. Heart J. 2020; 41: 1286–1297. https://doi.org/10.1093/eurheartj/ehz552
3. Ilardi F., D'Andrea A., D'Ascenzi F., Bandera F., Benfari G., Esposito R., Malagoli A., Mandoli G.E., Santoro C., Russo V., Crisci M., Esposito G., Cameli M., On behalf of the working group of echocardiography of the italian society of cardiology sic. Myocardial work by echocardiography: principles and applications in clinical practice. J. Clin. Med. 2021; 10: 4521. https://doi.org/10.3390/jcm10194521
4. Moya A., Buytaert D., Penicka M., Bartunek J., Vanderheyden M. State-of-the-Art: Noninvasive Assessment of Left Ventricular Function Through Myocardial Work. J. Am. Soc. Echocardiogr. 2023; 36 (10): 1027–1042. https://doi.org/10.1016/j.echo.2023.07.002
5. Russell K., Eriksen M., Aaberge L., Wilhelmsen N., Skulstad H., Remme E.W., Haugaa K.H., Opdahl A., Fjeld J.G., Gjesdal O., Edvardsen T., Smiseth O.A. A novel clinical method for quantification of regional left ventricular pressure-strain loop area: a non-invasive index of myocardial work. Eur. Heart J. 2012; 33 (6): 724–733. https://doi.org/10.1093/eurheartj/ehs016
6. Russell K., Eriksen M., Aaberge L., Wilhelmsen N., Skulstad H., Gjesdal O., Edvardsen T., Smiseth O.A. Assessment of wasted myocardial work: a novel method to quantify energy loss due to uncoordinated left ventricular contractions. Am. J. Physiol. – Heart and Circ. Physiol. 2013; 305 (7): H996–1003. https://doi.org/10.1152/ajpheart.00191.2013
7. Papadopoulos K., Özden Tok Ö., Mitrousi K., Ikonomidis I. Myocardial Work: Methodology and Clinical Applications. Diagnostics (Basel). 2021; 11 (3): 573. https://doi.org/10.3390/diagnostics11030573
8. Smiseth O.A., Donal E., Penicka M., Sletten O.J. How to measure left ventricular myocardial work by pressure-strain loops. Eur. Heart J. Cardiovasc. Imaging. 2021; 22 (3): 259–261. https://doi.org/10.1093/ehjci/jeaa301
9. Ivanov SI, Alekhin MN. Myocardial work in assessment of left ventricular systolic function. Kardiologiia. 2020; 60 (3): 80–88. https://doi.org/10.18087/cardio.2020.3.n925 (In Russian)
10. Collier P., Phelan D., Klein A. A Test in Context: Myocardial Strain Measured by Speckle-Tracking Echocardiography. J. Am. Coll. Cardiol. 2017; 69 (8): 1043–1056. https://doi.org/10.1016/j.jacc.2016.12.012
11. Marzlin N., Hays A.G., Peters M., Kaminski A., Roemer S., O'Leary P., Kroboth S., Harland D.R., Khandheria B.K., Tajik A.J., Jain R. Myocardial Work in Echocardiography. Circ. Cardiovasc. Imaging. 2023; 16 (2): e014419. https://doi.org/10.1161/CIRCIMAGING.122.014419
12. Manganaro R., Marchetta S., Dulgheru R., Ilardi F., Sugimoto T., Robinet S., Cimino S., Go Y.Y., Bernard A., Kacharava G., Athanassopoulos G.D., Barone D., Baroni M., Cardim N., Hagendorff A., Hristova K., López-Fernández T., de la Morena G., Popescu B.A., Penicka M., Ozyigit T., Rodrigo Carbonero J.D., van de Veire N., Von Bardeleben R.S., Vinereanu D., Zamorano J.L., Rosca M., Calin A., Moonen M., Magne J., Cosyns B., Galli E., Donal E., Carerj S., Zito C., Santoro C., Galderisi M., Badano L.P., Lang R.M., Oury C., Lancellotti P. Echocardiographic reference ranges for normal non-invasive myocardial work indices: results from the EACVI NORRE study. Eur. Heart J. Cardiovasc. Imaging. 2019; 20 (5): 582–590. https://doi.org/10.1093/ehjci/jey188
13. Truong V.T., Vo H.Q., Ngo T.N.M., Mazur J., Nguyen T.T.H., Pham T.T.M., Le T.K., Phan H., Palmer C., Nagueh S.F., Chung E.S. Normal Ranges of Global Left Ventricular Myocardial Work Indices in Adults: A Meta-Analysis. J. Am. Soc. Echocardiogr. 2022; 35 (4): 369–377.e8. https://doi.org/10.1016/j.echo.2021.11.010
14. Olsen F.J., Skaarup K.G., Lassen M.C.H., Johansen N.D., Sengeløv M., Jensen G.B., Schnohr P., Marott J.L., Søgaard P, Gislason G., Svendsen J.H., Møgelvang R., Aalen J.M., Remme E.W., Smiseth O.A., Biering-Sørensen T. Normal Values for Myocardial Work Indices Derived From Pressure-Strain Loop Analyses: From the CCHS. Circ. Cardiovasc. Imaging. 2022; 15 (5): e013712. https://doi.org/10.1161/CIRCIMAGING.121.013712
15. Chan J., Edwards N.F.A., Scalia G.M., Khandheria B.K. Myocardial Work: A New Type of Strain Imaging? J. Am. Soc. Echocardiogr. 2020; S0894–7317 (20) 30295–30299. https://doi.org/10.1016/j.echo.2020.05.004
16. Dobrovie M., Bėzy S., Ünlü S., Chakraborty B., Petrescu A., Duchenne J., Beela A.S., Voigt J.U. How Does Regional Hypertrophy Affect Strain Measurements With Different Speckle-Tracking Methods? J. Am. Soc. Echocardiogr. 2019; 32 (11): 1444–1450. https://doi.org/10.1016/j.echo.2019.06.008
17. Tokodi M., Oláh A., Fábián A., Lakatos B.K., Hizoh I., Ruppert M., Sayour A.A., Barta B.A., Kiss O., Sydó N., Csulak E., Ladányi Z., Merkely B., Kovács A., Radovits T. Novel insights into the athlete's heart: is myocardial work the new champion of systolic function? Eur. Heart J. Cardiovasc. Imaging. 2022; 23 (2): 188–197. https://doi.org/10.1093/ehjci/jeab162.
18. Chan J., Edwards N.F.A., Khandheria B.K., Shiino K., Sabapathy S., Anderson B., Chamberlain R., Scalia G.M. A new approach to assess myocardial work by non-invasive left ventricular pressure – strain relations in hypertension and dilated cardiomyopathy. Eur. Heart J. Cardiovasc. Imaging. 2019; 20 (1): 31–39. https://doi.org/10.1093/ehjci/jey131
19. Tadic M., Cuspidi C., Pencic B., Grassi G., Celic V. Myocardial work in hypertensive patients with and without diabetes: an echocardiographic study. J. Clin. Hypertens. (Greenwich). 2020; 22: 2121–2127. https://doi.org/10.1111/jch.14053
20. Jaglan A., Roemer S., Perez Moreno A.C., Khandheria B.K. Myocardial work in stage 1 and 2 hypertensive patients. Eur. Heart J. Cardiovasc. Imaging. 2021; 22: 744–750. https://doi.org/10.1093/ehjci/jeab043
21. Boe E., Russell K., Eek C., Eriksen M., Remme E.W., Smiseth O.A., Skulstad H. Non-invasive myocardial work index identifies acute coronary occlusion in patients with non-ST-segment elevation-acute coronary syndrome. Eur. Heart J. Cardiovasc. Imaging. 2015; 16: 1247–1255. https://doi.org/10.1093/ehjci/jev078
22. Edwards N.F.A., Scalia G.M., Shiino K., Sabapathy S., Anderson B., Chamberlain R., Khandheria B.K., Chan J. Global myocardial work is superior to global longitudinal strain to predict significant coronary artery disease in patients with normal left ventricular function and wall motion. J. Am. Soc. Echocardiogr. 2019; 32: 947–957. https://doi.org/10.1016/j.echo.2019.02.014
23. Borrie A., Goggin C., Ershad S., Robinson W., Sasse A. Noninvasive myocardial work index: characterizing the normal and ischemic response to exercise. J. Am. Soc. Echocardiogr. 2020; 33: 1191–1200. https://doi.org/10.1016/j.echo.2020.05.003
24. Vecera J., Penicka M., Eriksen M., Russell K., Bartunek J., Vanderheyden M., Smiseth O.A. Wasted septal work in left ventricular dyssynchrony: a novel principle to predict response to cardiac resynchronization therapy. Eur. Heart J. Cardiovasc. Imaging. 2016; 17: 624–632. https://doi.org/10.1093/ehjci/jew019
25. Galli E., Vitel E., Schnell F., Le Rolle V., Hubert A., Lederlin M., Donal E. Myocardial constructive work is impaired in hypertrophic cardiomyopathy and predicts left ventricular fibrosis. Echocardiogr. 2019; 36: 74–82. https://doi.org/10.1111/echo.14210
26. Gonçalves A.V., Rosa S.A., Branco L., Galrinho A., Fiarresga A., Lopes L.R., Thomas B., Baquero L., Carmo M.M., Ferreira R.C. Myocardial work is associated with significant left ventricular myocardial fibrosis in patients with hypertrophic cardiomyopathy. Int. J. Cardiovasc. Imaging. 2021; 37: 2237–2244. https://doi.org/10.1007/s10554-021-02186-3
27. Hiemstra Y.L., van der Bijl P., El Mahdiui M., Bax J.J., Delgado V., Marsan N.A. Myocardial work in nonobstructive hypertrophic cardiomyopathy: implications for outcome. J. Am. Soc. Echocardiogr. 2020; 33: 1201–1208. https://doi.org/10.1016/j.echo.2020.05.010
28. Clemmensen T.S., Eiskjær H., Ladefoged B., Mikkelsen F., Sørensen J., Granstam S.O., Rosengren S., Flachskampf F.A., Poulsen S.H. Prognostic implications of left ventricular myocardial work indices in cardiac amyloidosis. Eur. Heart J. Cardiovasc. Imaging. 2021; 22: 695–704. https://doi.org/10.1093/ehjci/jeaa097
29. Cui C., Li Y., Liu Y., Huang D., Hu Y., Wang Y., Ma L., Liu L. Association between echocardiographic non-invasive myocardial work indices and myocardial fibrosis in patients with dilated cardiomyopathy. Front Cardiovasc. Med. 2021; 8: 704251. https://doi.org/10.3389/fcvm.2021.704251
30. Hedwig F., Nemchyna O., Stein J., Knosalla C., Merke N, Knebel F., Hagendorff A., Schoenrath F., Falk V., Knierim J. Myocardial work assessment for the prediction of prognosis in advanced heart failure. Front. Cardiovasc. Med. 2021; 8: 691611. https://doi.org/10.3389/fcvm.2021.691611
31. Calvillo-Argüelles O., Thampinathan B., Somerset E., Shalmon T., Amir E., Steve Fan C.P., Moon S., Abdel-Qadir H., Thevakumaran Y., Day J., Woo A., Wintersperger B.J., Marwick T.H., Thavendiranathan P. Diagnostic and prognostic value of myocardial work indices for identification of cancer therapy-related cardiotoxicity. JACC Cardiovasc. Imaging. 2022; 15: 1361–1376. https://doi.org/10.1016/j.jcmg.2022.02.027
32. Ilardi F., Postolache A., Dulgheru R., Trung M.N., de Marneffe N., Sugimoto T., Go Y.Y., Oury C., Esposito G., Lancellotti P. Prognostic value of non-invasive global myocardial work in asymptomatic aortic stenosis. J. Clin. Med. 2022; 11: 1555. https://doi.org/10.3390/jcm11061555
33. Meucci M.C., Butcher S.C., Galloo X., van der Velde E.T., Marsan N.A., Bax J.J., Delgado V. Noninvasive left ventricular myocardial work in patients with chronic aortic regurgitation and preserved left ventricular ejection fraction. J. Am. Soc. Echocardiogr. 2022; 35: 703–711.e3. https://doi.org/10.1016/j.echo.2022.01.008
34. Yedidya I., Lustosa R.P., Fortuni F., van der Bijl P., Namazi F., Vo N.M., Meucci M.C., Ajmone Marsan N., Bax J.J., Delgado V. Prognostic implications of left ventricular myocardial work indices in patients with secondary mitral regurgitation. Circ. Cardiovasc. Imaging. 2021; 14: e012142. https://doi.org/10.1161/circimaging.120.012142
35. Hubert A., Galli E., Leurent G., Corbineau H., Auriane B., Guillaume L., Leclercq C., Donal E. Left ventricular function after correction of mitral regurgitation: impact of the clipping approach. Echocardiogr. 2019; 36: 2010– 2018. https://doi.org/10.1111/echo.14523
36. Minhas A.S., Gilotra N.A., Goerlich E., Metkus T., Garibaldi B.T., Sharma G., Bavaro N., Phillip S., Michos E.D., Hays A.G. Myocardial work efficiency, a novel measure of myocardial dysfunction, Is reduced in COVID-19 patients and associated with in-hospital mortality. Front Cardiovasc. Med. 2021; 8: 667721. https://doi.org/10.3389/fcvm.2021.667721
37.
38.
39.
Supplementary files
Review
For citations:
Ivanov S.I., Leschinskaya S.P., Alekhin M.N. The estimation of left ventricular myocardial work indicators during cardiac ultrasound imaging: methodology, capabilities, advantages and limitations. Ultrasound & Functional Diagnostics. 2023;(4):22-34. (In Russ.) https://doi.org/10.24835/1607-0771-2023-4-22-34