Preview

Ultrasound & Functional Diagnostics

Advanced search

Differential ultrasound diagnosis of benign and malignant ovarian tumors: diagnostic models, algorithms, stratification systems, consensuses (1990–2023).

https://doi.org/10.24835/1607-0771-2023-2-34-61

Abstract

The review presents the most common diagnostic models, algorithms and stratification systems developed for the purpose of optimal differential diagnosis of benign and malignant ovarian tumors from 1990 to the present. Four variants of the RMI 1–4 malignancy risk index with their comparative characteristics are described. A proprietary comprehensive ultrasound scoring scale for ovarian tumors is described. Algorithms for the integrated use of echography and tumor markers (CA-125, HE4, ROMA), including the Risk Ovarian Cancer computer system, are presented. All existing IOTA diagnostic models are described: Simple IOTA rules, Simple IOTA rules with quantitative calculation of the risk of malignancy, Logistic regression analysis IOTA LR1 & LR2, Easy IOTA descriptors, IOTA ADNEX. The main algorithms for the integrated use of IOTA models are presented. The principles of using the diagnostic stratification systems GI-RADS and O-RADS are outlined. Clinical examples of the use of diagnostic models are given. The review concludes by presenting the ESGO/ISUOG/IOTA/ESGE consensus on the preoperative diagnosis of ovarian tumors.

About the Authors

M. N. Bulanov
Regional Clinical Hospital; Yaroslav-the-Wise Novgorod State University
Russian Federation

Mikhail N. Bulanov – Doct. of Sci. (Med.), Head of Ultrasound Diagnostics Department; Professor, Division of Internal Medicine, Institute of Medical Education

21, Sudogodskoye shosse, Vladimir 600023

41, Bolshaya St. Petersburgskaya str., Veliky Novgorod 173003



M. A. Chekalova
Federal Scientific Clinical Center for Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency (FMBA of Russia)

Marina A. Chekalova – Doct. of Sci. (Med.), Professor, Professor of the Department of Radiology and Ultrasound Diagnostics of the Institute of Professional Development

28, Orehovy boulevard, Moscow 115682



M. V. Mazurkevich
City Clinical Hospital No52 of Moscow Healthcare Department

Margarita V. Mazurkevich – Cand. of Sci. (Med.), Associate Professor, Head of the Ultrasound Diagnostics Department

3, Pekhotnaya str., Moscow 123182



N. N. Vetsheva
Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of the Russian Federation

Natalia N. Vetsheva – Doct. of Sci. (Med.), Professor of the Department of Ultrasound Diagnostics

2/1, bld. 1, Barrikadnaya str., Moscow 125993



References

1. Jacobs I., Oram D., Fairbanks J., Turner J., Frost C., Grudzinskas J.G. A risk of malignancy index incorporating CA 125, ultrasound and menopausal status for the accurate preoperative diagnosis of ovarian cancer. Br. J. Obstet. Gynaecol. 1990; 97: 922–929. http://doi.org/10.1111/j.1471-0528. 1990.tb02448.x

2. Tingulstad S., Hagen B., Skjeldestad F.E., Onsrud M., Kiserud T., Halvorsen T., Nustad K. Evaluation of a risk of malignancy index based on serum CA125, ultrasound findings and menopausal status in the pre-operative diagnosis of pelvic masses. Br. J. Obstet. Gynaecol. 1996; 103 (8): 826–831. http://doi.org/10.1111/j.1471-0528.1996. tb09882.x

3. Tingulstad S., Hagen B., Skjeldestad F.E., Halvorsen T., Nustad K., Onsrud M. The risk-ofmalignancy index to evaluate potential ovarian cancers in local hospitals. Obstet. Gynecol. 1999; 93 (3): 448–452.

4. Yamamoto Y., Yamada R., Oguri H., Maeda N., Fukaya T. Comparison of four malignancy risk indices in the preoperative evaluation of patients with pelvic masses. Eur. J. Obstet. Gynecol. Reprod. Biol. 2009; 144 (2): 163–167. http://doi.org/10.1016/j.ejogrb.2009.02.048

5. Abdalla N., Piórkowski R., Stanirowski P., Cendrowski K., Sawicki W. Can Replacing CA125 with HE4 in Risk of Malignancy Indices 1-4 Improve Diagnostic Performance in the Presurgical Assessment of Adnexal Tumors? Biomed. Res. Int. 2017; 2017: 6712376. http://doi.org/10.1155/2017/6712376

6. Zhang S., Yu S., Hou W., Li X., Ning C., Wu Y., Zhang F., Jiao Y.F., Lee L.T.O., Sun L. Diagnostic extended usefulness of RMI: comparison of four risk of malignancy index in preoperative differentiation of borderline ovarian tumors and benign ovarian tumors. J. Ovarian Res. 2019; 12 (1): 87. http://doi.org/10.1186/s13048-019-0568-3

7. Ulyanova A.V., Ponomareva Yu.N., Manukhin I.B., Kapustin V.V. Comparative assessment of algorithms for differential diagnosis of ovarian formations (ROMA, RMI). Ultrasound and Functional Diagnostics. 2020; 2: 48–59. http://doi.org/10.24835/1607-0771-2020-2-48-59 (In Russian)

8. Bulanov M.N. The value of transvaginal color Dopplerography in combination with pulsed Doppler for the differential diagnosis of benign and malignant ovarian tumors: Dis. ... Candidate of Medical Sciences. Moscow, 1999. 165 p. (In Russian)

9. Borisova E.A. Complex differential diagnosis of tumors of the uterine appendages: Dis. ... of Candidate of Medical Sciences. Irkutsk, 2018. 156 p. (In Russian)

10. Borisova E.A., Bulanov M.N., Makarenko T.A., Kirichenko O.N. New algorithm for differential diagnosis of benign and malignant ovarian tumors, printed. Ultrasound and Functional Diagnostics. 2015; 4 (Supplement. Abstracts of the II Congress of the Russian Association of Ultrasound Diagnostics in Medicine (November 10–13, 2015, Moscow)): 28. (In Russian)

11. Borisova E.A., Bulanov M.N., Pashov A.I., Makarenko T.A., Narkevich A.N. Possibilities of integrated use of echography and tumor markers (CA-125, HE4, ROMA) for differential diagnosis of ovarian tumors printed. Ultrasound and Functional Diagnostics. 2015; 6: 56–65. (In Russian)

12. Timmerman D., Valentin L., Bourne T.H., Collins W.P., Verrelst H., Vergote I. International Ovarian Tumor Analysis (IOTA) Group. Terms, definitions and measurements to describe the sonographic features of adnexal tumors: a consensus opinion from the International Ovarian Tumor Analysis (IOTA) Group. Ultrasound Obstet. Gynecol. 2000; 16 (5): 500–505. http://doi.org/10.1046/j.1469-0705.2000.00287.x

13. Timmerman D., Testa A.C., Bourne T., Ameye L., Jurkovic D., Van Holsbeke C., Paladini D., Van Calster B., Vergote I., Van Huffel S., Valentin L. Simple ultrasound-based rules for the diagnosis of ovarian cancer. Ultrasound Obstet. Gynecol. 2008; 31 (6): 681–690. http://doi.org/10.1002/uog.5365

14. Nunes N., Ambler G., Foo X., Naftalin J., Widschwendter M., Jurkovic D. Use of IOTA simple rules for diagnosis of ovarian cancer: metaanalysis. Ultrasound Obstet. Gynecol. 2014; 44 (5): 503–514. http://doi.org/10.1002/uog.13437

15. Meys E., Rutten I., Kruitwagen R., Slangen B., Lambrechts S., Mertens H., Nolting E., Boskamp D., Van Gorp T. Simple Rules, Not So Simple: The Use of International Ovarian Tumor Analysis (IOTA) Terminology and Simple Rules in Inexperienced Hands in a Prospective Multicenter Cohort Study. Ultraschall Med. 2017; 38 (6): 633– 641. http://doi.org/10.1055/s-0043-113819

16. Timmerman D., Van Calster B., Testa A., Savelli L., Fischerova D., Froyman W., Wynants L., Van Holsbeke C., Epstein E., Franchi D., Kaijser J., Czekierdowski A., Guerriero S., Fruscio R., Leone F.P.G., Rossi A., Landolfo C., Vergote I., Bourne T., Valentin L. Predicting the risk of malignancy in adnexal masses based on the Simple Rules from the International Ovarian Tumor Analysis group. Am. J. Obstet. Gynecol. 2016; 214 (4): 424– 437. http://doi.org/10.1016/j.ajog.2016.01.007

17. Hidalgo J.J., Ros F., Aubá M., Errasti T., Olartecoechea B., Ruiz-Zambrana Á., Alcázar J.L. Prospective external validation of IOTA three-step strategy for characterizing and classifying adnexal masses and retrospective assessment of alternative two-step strategy using simple-rules risk. Ultrasound Obstet. Gynecol. 2019; 53 (5): 693–700. http://doi.org/10.1002/uog.20163

18. Timmerman D., Van Calster B., Testa A.C., Guerriero S., Fischerova D., Lissoni A.A., Van Holsbeke C., Fruscio R., Czekierdowski A., Jurkovic D., Savelli L., Vergote I., Bourne T., Van Huffel S., Valentin L. Ovarian cancer prediction in adnexal masses using ultrasound-based logistic regression models: a temporal and external validation study by the IOTA group. Ultrasound Obstet. Gynecol. 2010; 36: 226–234. http://doi.org/10.1002/uog.7636

19. Nunes N., Ambler G., Foo X., Widschwendter M., Jurkovic D. Prospective evaluation of IOTA logistic regression models LR1 and LR2 in comparison with subjective pattern recognition for diagnosis of ovarian cancer in an outpatient setting. Ultrasound Obstet. Gynecol. 2018; 51 (6): 829–835. http://doi.org/10.1002/uog.18918

20. Ameye L., Timmerman D., Valentin L., Paladini D., Zhang J., Van Holsbeke C., Lissoni A.A., Savelli L., Veldman J., Testa A.C., Amant F., Van Huffel S., Bourne T. Clinically oriented three-step strategy for assessment of adnexal pathology. Ultrasound Obstet. Gynecol. 2012; 40 (5): 582–591. http://doi.org/10.1002/uog.11177

21. Van Calster B., Van Hoorde K., Froyman W., Kaijser J., Wynants L., Landolfo C., Anthoulakis C., Vergote I., Bourne T., Timmerman D. Practical guidance for applying the ADNEX model from the IOTA groBenign discriminate between different subtypes of adnexal tumors. Facts. Views Vis. Obgyn. 2015; 7 (1): 32–41. PMID: 25897370

22. Araujo K.G., Jales R.M., Pereira P.N., Yoshida A., de Angelo Andrade L., Sarian L.O., Derchain S. Performance of the IOTA ADNEX model in preoperative discrimination of adnexal masses in a gynecological oncology center. Ultrasound Obstet. Gynecol. 2017; 49 (6): 778–783. http://doi.org/10.1002/uog.15963

23. Landolfo C., Valentin L., Franchi D., Van Holsbeke C., Fruscio R., Froyman W., Sladkevicius P., Kaijser J., Ameye L., Bourne T., Savelli L., Coosemans A., Testa A., Timmerman D. Differences in ultrasound features of papillations in unilocular-solid adnexal cysts: a retrospective international multicenter study. Ultrasound Obstet. Gynecol. 2018; 52 (2): 269–278. http://doi.org/10.1002/uog.18951

24. Esquivel Villabona A.L., Rodríguez J.N., Ayala N., Buriticá C., Gómez A.C., Velandia A.M., Rodríguez N., Alcázar J.L. Two-Step Strategy for Optimizing the Preoperative Classification of Adnexal Masses in a University Hospital, Using International Ovarian Tumor Analysis Models: Simple Rules and Assessment of Different NEoplasias in the adneXa Model. J. Ultrasound Med. 2022; 41 (2): 471–482. http://doi.org/10.1002/jum.15728

25. Amor F., Vaccaro H., Alcázar J.L., León M., Craig J.M., Martinez J. Gynecologic imaging reporting and data system: a new proposal for classifying adnexal masses on the basis of sonographic findings. J. Ultrasound Med. 2009; 28 (3): 285– 291. http://doi.org/10.7863/jum.2009.28.3.285

26. Liberman L., Menell J.H. Breast imaging reporting and data system (BI-RADS). Radiol. Clin. N. Am. 2002; 40 (3): 409–430, v. http://doi.org/10.1016/s0033-8389(01)00017-3

27. Amor F., Alcázar J.L., Vaccaro H., León M., Iturra A. GI-RADS reporting system for ultrasound evaluation of adnexal masses in clinical practice: a prospective multicenter study. Ultrasound Obstet. Gynecol. 2011; 38 (4): 450–455. http://doi.org/10.1002/uog.9012

28. Migda M., Bartosz M., Migda M.S., Kierszk M., Katarzyna G., Maleńczyk M. Diagnostic value of the gynecology imaging reporting and data system (GI-RADS) with the ovarian malignancy marker CA-125 in preoperative adnexal tumor assessment. J. Ovarian Res. 2018; 11 (1): 92. http://doi.org/10.1186/s13048-018-0465-1

29. Andreotti R.F., Timmerman D., Benacerraf B.R., Bennett G.L., Bourne T., Brown D.L., Coleman B.G., Frates M.C., Froyman W., Goldstein S.R., Hamper U.M., Horrow M.M., HernanzSchulman M., Reinhold C., Strachowski L.M., Glanc P. Ovarian-Adnexal Reporting Lexicon for Ultrasound: A White Paper of the ACR OvarianAdnexal Reporting and Data System Committee. J. Am. Coll. Radiol. 2018; 15 (10): 1415–1429. [Published correction appears in J. Am. Coll. Radiol. 2019; 16 (3): 403–406.]

30. Strachowski L.M., Jha P., Phillips C.H., Blanchette Porter M.M., Froyman W., Glanc P., Guo Y., Patel M.D., Reinhold C., Suh-Burgmann E.J., Timmerman D., Andreotti R.F. O-RADS US v2022: An Update from the American College of Radiology's Ovarian-Adnexal Reporting and Data System US Committee. Radiology. 2023; 308 (3): e230685. http://doi.org/10.1148/radiol.230685

31. Andreotti R.F., Timmerman D., Strachowski L.M., Froyman W., Benacerraf B.R., Bennett G.L., Bourne T., Brown D.L., Coleman B.G., Frates M.C., Goldstein S.R., Hamper U.M., Horrow M.M., Hernanz-Schulman M., Reinhold C., Rose S.L., Whitcomb B.P., Wolfman W.L., Glanc P. O-RADS US Risk Stratification and Management System: A Consensus Guideline from the ACR OvarianAdnexal Reporting and Data System Committee. Radiology. 2020; 294 (1): 168–185. http://doi.org/10.1148/radiol.2019191150

32. Hack K., Gandhi K., Kahn D., Glanc P. External validation O-RADS ultrasound risk stratificationand management system. Ultrasound Obstet. Gynecol. 2021; 58 (Suppl. 1): 1–57.

33. Rodriguez N., Rodriguez N., Solano D.A., Pitalua N., Huertas B., Esquivel A., Buritica C. An external validation of the O-RADS risk stratification todifferentiate between benign and malignant adnexal masses. Ultrasound Obstet. Gynecol. 2021; 58 (Suppl. 1): 1–57. https://doi.org/10.1002/uog.23787

34. Timmerman D., Planchamp F., Bourne T., Landolfo C., du Bois A., Chiva L., Cibula D., Concin N., Fischerova D., Froyman W., Gallardo Madueño G., Lemley B., Loft A., Mereu L., Morice P., Querleu D., Testa A.C., Vergote I., Vandecaveye V., Scambia G., Fotopoulou C. ESGO/ISUOG/IOTA/ESGE Con sensus Statement on pre-operative diagnosis of ovarian tumors. Int. J. Gynecol. Cancer. 2021; 31 (7): 961–982. http://doi.org/10.1136/ijgc-2021-002565


Review

For citations:


Bulanov M.N., Chekalova M.A., Mazurkevich M.V., Vetsheva N.N. Differential ultrasound diagnosis of benign and malignant ovarian tumors: diagnostic models, algorithms, stratification systems, consensuses (1990–2023). Ultrasound & Functional Diagnostics. 2023;(2):34-61. (In Russ.) https://doi.org/10.24835/1607-0771-2023-2-34-61

Views: 1968


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-0771 (Print)
ISSN 2408-9494 (Online)