Analysis of the significance of echocardiographic signs of right ventricular dysfunction for predicting the outcome of heart failure with reduced left ventricular ejection fraction
https://doi.org/10.24835/1607-0771-021
Abstract
Objective: to determine the ultrasound signs of right heart dysfunction, which increase the prognostic value of the recommended parameters of left ventricular (LV) dysfunction in patients with heart failure with reduced ejection fraction (HFrEF).
Materials and methods. The prospective study included 79 patients with HFrEF LV with clinical manifestations of chronic heart failure functional class III according to the New York Heart Association (HF NYHA Class III) in 52 patients (65.8%) and HF NYHA Class IV in 27 (34.1%). The primary end point was death during a follow-up period of up to 3 years while waiting for heart transplantation.
Results. Overall mortality was 33 patients (41.7%), 17 (21.5%) during the 1st year of follow-up. Regression analysis revealed the following independent ultrasound predictors of poor prognosis: LV ejection fraction on 3D-echocardiography (3DE LVEF), p = 0.014; global longitudinal strain of the LV (GLS LV), p = 0.010, and of the interventricular septum basal segment (IVSLS BS), p = 0.012; mean longitudinal strain of the basal segment of the right ventricle free wall (FWLS BS RV), p = 0.003. Changes in the configuration and dilatation of the LV cavity, an increase in LV end-diastolic pressure, impaired contractility, and strain of the LV myocardium can affect the function of the right ventricle (RV) through the common interventricular septum (IVS). Dilatation of the RV due to an increase in the end diastolic area (RV EDA) of more than 30 cm2 (p = 0.012) and end systolic area (RV ESA) of more than 25 cm2 (p = 0.001), an increase in the volume of the right atrium (3DE AKI) of more than 100 ml (p = 0.036), and a decrease in the % inspiratory collapse of the inferior vena cava (% IVC) less than 30% (p = 0.005) demonstrated a prognostic significance in the observed patients. A decrease in the deformation properties of the pancreas due to the longitudinal component and impaired strain of the basal segment makes a greater contribution to RV dysfunction (FWLS BS, % < -15% (p < 0.001)).
Conclusions. RV dysfunction in patients with HFrEF is an unfavorable prognostic factor, independently associated with existing LV dysfunction. The most significant ultrasound sign for surveillance prediction of patients with LV HFrEF and RV dysfunction are indicators of ventricular myocardial deformation. Remodeling of the right chambers and dysfunction of the RV is a trigger for the separation of the RV and pulmonary artery, which ultimately leads to adverse outcomes.
About the Authors
V. I. SkidanRussian Federation
Viktoria I. Skidan – Cand. of Sci. (Med.), Physician of the Clinical Diagnostics Department, Federal Center of Cardiovascular Surgery, Khabarovsk
E. N. Pavlyukova
Russian Federation
Elena N. Pavlyukova – Doct. of Sci. (Med.), Professor, Head of the Scientific Department of Functional Diagnostics at National research Center – Academician E.N. Meshalkin State Research Institute of Circulation Pathology, Novosibirsk
G. P. Nartsissova
Russian Federation
Galina P. Nartsissova – Doct. of Sci. (Med.), Professor, Leading researcher of Department of Functional Diagnostics; Functional Diagnostics Physician of the Ultrasound and Functional Diagnostics Department at National research Center – Academician E.N. Meshalkin State Research Institute of Circulation Pathology, Novosibirsk
V. M. Voronkov
Russian Federation
Vladislav M. Voronkov – a 6th year student of the Medical-prophylactic Faculty at the Far Eastern State Medical University, Khabarovsk
D. A. Astapov
Russian Federation
Dmitry A. Astapov – Doct. of Sci. (Med.), Deputy Director General for Clinical Work at National research Center – Academician E.N. Meshalkin State Research Institute of Circulation Pathology, Novosibirsk
E. V. Rosseykin
Russian Federation
Evgeny V. Rosseykin – Doct. of Sci. (Med.), Professor, Chief Physician of Federal Center of Cardiovascular Surgery, Khabarovsk
References
1. Maddox T.M., Januzzi J.L. Jr., Allen L.A. et al. 2021 Update to the 2017 ACC Expert Consensus Decision Pathway for Optimization of Heart Failure Treatment: Answers to 10 Pivotal Issues About Heart Failure with Reduced Ejection Fraction: A Report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2021; 77 (6): 772–810. https://doi.org/10.1016/j.jacc.2020.11.022
2. Bosch L., Lam C., Gong L. et al. Right ventricular dysfunction in left-sided heart failure with preserved versus reduced ejection fraction. Eur. J. Heart Fail. 2017; 19 (12): 1664–1671. https://doi.org/10.1002/ejhf.873
3. Torrent-Guasp F., Kocica M.J., Corno A.F. et al. Towards new understanding of the heart structure and function. Eur. J. Cardiothorac. Surg. 2005; 27 (2): 191–201. https://doi.org/10.1016/j.ejcts.2004.11.026
4. Pavlyukova E.N., Kuzhel D.A., Matyushin G.V. et al. Left ventricular rotation, twist and untwist: physiological role and clinical relevance. Rational Pharmacotherapy in Cardiology. 2015; 11 (1): 68–78. http://dx.doi.org/10.20996/1819-6446-2016-12-4-435-442 (In Russian)
5. Surkova E., Kovács A. Comprehensive Echocardiographic Assessment of the Right Ventricular Performance: beyond TAPSE and fractional area change. Russian Journal of Cardiology. 2020; 25 (S3): 4067. https://doi.org/10.15829/1560-4071-2020-4067 (In Russian)
6. Surkova E., Muraru D., Genovese D. et al. Relative Prognostic Importance of Left and Right Ventricular Ejection Fraction in Patients with Cardiac Diseases. J. Am. Soc. Echocardiogr. 2019; 32 (11): 1407–1415. https://doi.org/10.1016/j.echo.2019.06.009
7. Gorter T.M., Hoendermis E.S., van Veldhuisen D.J. et al. Right ventricular dysfunction in heart failure with preserved ejection fraction: a systematic review and meta-analysis. Eur. J. Heart Fail. 2016: 18; 1472–1487. https://doi.org/10.1002/ejhf.630
8. Gavazzoni M., Badano L.P., Vizzardi E. et al. Prognostic value of right ventricular free wall longitudinal strain in a large cohort of outpatients with left-side heart disease. Eur. Heart J. Cardiovasc. Imaging. 2019; jez246. https://doi.org/10.1093/ehjci/jez246
9. Lang R.M., Badano L.P., Mor-Avi V. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging. 2015; 16: 233–270. https://doi.org/10.1093/ehjci/jev014
10. Skidan V.I., Borowski A., Park M. Assessment of the contractility of the right ventricle using real-time three-dimensional echocardiography in patients with acute decompensated heart failure. Ultrasound and Functional Diagnostics. 2012; 1: 52–67. (In Russian)
11. Horton K.D., Meece R.W., Hill J.C. Assessment of the right ventricle by echocardiography: a primer for cardiac sonographers. J. Am. Soc. Echocardiogr. 2009; 22 (7): 776–792. https://doi.org/10.1016/j.echo.2009.04.027
12. Grewal J., Majdalany D., Syed I. et al. Threedimensional echocardiographic assessment of right ventricular volume and function in adult patients with congenital heart disease: comparison with magnetic resonance imaging. J. Am. Soc. Echocardiogr. 2010; 23 (2): 127–133. https://doi.org/10.1016/j.echo.2009.11.002
13. Badano L., Kolias T., Muraru D. et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur. Heart J. Cardiovasc. Imaging. 2018; 19 (6): 591–600. https://doi.org/10.1093/ehjci/jey042
14. Mittelböck M. Book Review: Survival Analysis: Techniques for Censored and Truncated Data. By John P. Klein and Melvin L. Moeschberger. Biometr. J. 2004; 46 (3): 379–379. https://doi.org/10.1002/bimj.200410046
15. Escobar L.A., Pascual F.G., Meeker W.Q. Statistical Methods for Reliability Data. 2nd ed. 2022. New York: John Wiley & Sons. 704 p. ISBN: 978-1-118-11545-9
16. SAS Institute Inc. (2023). “The LIFETEST Procedure.” In SAS/STAT® User’s Guide. Cary, NC: SAS Institute Inc. https://go.documentation.sas.com/api/collections/pgmsascdc/9.4_3.5/docsets/statug/content/lifetest.pdf
17. Skidan V.I., Rosseykin E.V., Pavlyukova E.N., Nartsissova G.P. Significance of echocardiographic right ventricular predictors of adverse prognosis in right ventricular dysfunction in patients with HFrEF. Eur. Heart J. – Cardiovasc. Imaging. 2022; 23 (1): jeab289.388. https://doi.org/10.1093/ehjci/jeab289.388
18. Buckberg G.D., Hoffman J.I., Coghlan H.C., Nanda N.C. Ventricular structure-function relations in health and disease: Part I. The normal heart. Eur. J. Cardiothorac. Surg. 2015; 47 (4): 587–601. https://doi.org/10.1093/ejcts/ezu278
19. Plunkett M.D., Buckberg G.D. Pathophysiologic implications of the helical ventricular myocardial band: considerations for right ventricular restoration. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 2007; 10: 68–75. https://doi.org/10.1053/j.pcsu.2007.01.011
20. Buckberg G.D.; RESTORE Group. The ventricular septum: the lion of right ventricular function, and its impact on right ventricular restoration. Eur. J. Cardiothorac. Surg. 2006; 29 (suppl 1): S272–S278. https://doi.org/10.1016/j.ejcts.2006.02.011
21. Tadic M., Nita N., Schneider L. et al. The Predictive Value of Right Ventricular Longitudinal Strain in Pulmonary Hypertension, Heart Failure, and Valvular Diseases. Front. Cardiovasc. Med. 2021; 8: 698158. https://doi.org/10.3389/fcvm.2021.698158
22. Kim D., Park Y., Choi K. et al. Prognostic Implication of RV Coupling to Pulmonary Circulation for Successful Weaning from Extracorporeal Membrane Oxygenation. JACC. Cardiovasc Imaging. 2021; 14 (8): 1523–1531. https://doi.org/10.1016/j.jcmg.2021.02.018
23. Pagnamenta A., Dewachter C., McEntee K. et al. Early right ventriculo-arterial uncoupling in borderline pulmonary hypertension on experimental heart failure. J. Appl. Physiol. (1985). 2010; 109: 1080–1085. https://doi.org/10.1152/japplphysiol.00467.2010
24. Lakatos B., Toser Z., Tokodi M. et al. Quantification of the relative contribution of the different right ventricular wall motion components to right ventricular ejection fraction: the ReVISION method. Cardiovasc. Ultrasound. 2017; 15 (1): 8. https://doi.org/10.1186/s12947017-0100-0
25. Smith B.C., Dobson G., Dawson D. et al. Three-dimensional speckle tracking of the right ventricle: toward optimal quantification of right ventricular dysfunction in pulmonary hypertension. J. Am. Coll. Cardiol. 2014; 64 (1): 41–51. https://doi.org/10.1016/j.jacc.2014.01.084
26. Badano L.P., Ginghina C., Easaw J. et al. Right ventricle in pulmonary arterial hypertension: haemodynamics, structural changes, imaging, and proposal of a study protocol aimed to assess remodelling and treatment effects. Eur. J. Echocardiogr. 2010; 11 (1): 27–37. https://doi.org/10.1093/ejechocard/jep152
27. Guazzi M., Gatto P., Giusti G. et al. Pathophysiology of cardiorenal syndrome in decompensated heart failure: role of lung-right heart-kidney interaction. Int. J. Cardiol. 2013; 169 (6): 379–384. https://doi.org/10.1016/j.ijcard.2013.09.014
28. Naeije R., Brimioulle S., Dewachter L. Biomechanics of the right ventricle in health and disease (2013 Grover Conference series). Pulm. Circ. 2014; 4 (3): 395–406. https://doi.org/10.1086/677354
29. Aloia E., Cameli M., D’Ascenzi F. et al. TAPSE: an old butuseful tool in different diseases. Int. J. Cardiol. 2016; 225: 177–183. https://doi.org/10.1016/j.ijcard.2016.10.009
30. DeFilippis E.M., Guazzi M., Colombo P.C. et al. A right ventricular state of mind in the progression of heart failure with reduced ejection fraction: implications for left ventricular assist device therapy. Heart Fail. Rev. 2021; 26 (6): 1467–1475. https://doi.org/10.1007/s10741-020-09935-x
31. Damy T., Kallvikbacka-Bennett A., Goode K. et al. Prevalence of, associations with, and prognostic value of tricuspid annular plane systolic excursion (TAPSE) among out-patients referred for the evaluation of heart failure. J. Card. Fail. 2012; 18 (3): 216–225. https://doi.org/10.1016/j.cardfail.2011.12.003
32. Skidan V.I., Goda A.Y., Challa A.B. et al. Impact of plasma volume redistribution on outcomes in patients with heart failure with reduced ejection fraction. Eur. Heart J. – Cardiovasc. Imaging. 2023; 24 (Suppl. 1): jead119.260. https://doi.org/10.1093/ehjci/jead119.260
33. Houard L., Benaets M.-B., de Meester de Ravenstein C. et al. Additional prognostic value of 2D right ventricular speckle tracking strain for prediction of survival in heart failure and reduced ejection fraction: a comparative study with cardiac magnetic resonance. J. Am. Coll. Cardiol. Cardiovasc. Imaging.. 2019; 12 (12): 2373–2385. https://doi.org/10.1016/j.jcmg.2018.11.028
34. Muraru D., Cucchini U., Mihăilă S. et.al. Left ventricular myocardial strain by three-dimensional speckle-tracking echocardiography in healthy subjects: reference values and analysis of their physiologic and technical determinants. J. Am. Soc. Echocardiogr. 2014; 27 (8): 858–871.e1. https://doi.org/10.1016/j.echo.2014.05.010
35. Peluso D., Badano L.P., Muraru D. et al. Right atrial size and function assessed with three-dimensional and speckle-tracking echocardiography in 200 healthy volunteers. Eur. Heart J. Cardiovasc. Imaging. 2013; 14 (11): 1106–1114. https://doi.org/10.1093/ehjci/jet024
36. Lakatos B.K., Nabeshima Y., Tokodi M. et al. Importance of Nonlongitudinal Motion Components in Right Ventricular Function: Three-Dimensional Echocardiographic Study in Healthy Volunteers. J. Am. Soc. Echocardiogr. 2020; 33 (8): 995–1005.e1. https://doi.org/10.1016/j.echo.2020.04.002
37.
Supplementary files
Review
For citations:
Skidan V.I., Pavlyukova E.N., Nartsissova G.P., Voronkov V.M., Astapov D.A., Rosseykin E.V. Analysis of the significance of echocardiographic signs of right ventricular dysfunction for predicting the outcome of heart failure with reduced left ventricular ejection fraction. Ultrasound & Functional Diagnostics. 2024;(2):10-29. (In Russ.) https://doi.org/10.24835/1607-0771-021