Comparative characteristics of fetal cardiac function and hemodynamics based on echocardiographic findings in cases of supraventricular tachycardia that developed before 27.6 weeks of gestation and between 28 and 40 weeks of pregnancy
https://doi.org/10.24835/1607-0771-341
Abstract
Clinically significant fetal and neonatal arrhythmias occur in approximately 1 in 4,000 newborns and represent an important cause of morbidity and mortality. The most common arrhythmia is supraventricular tachycardia (SVT), which accounts for 70–75% of fetal cardiac rhythm disorders.
Objective. To compare cardiac contractile function and the hemodynamic state of fetuses with SVT that developed before 27.6 weeks of gestation versus SVT manifesting at 28–40 weeks of gestation.
Materials and Methods. The study was conducted from 2020 to 2024 and included 90 fetuses with the sustained form of SVT: 31 fetuses developed SVT before 27.6 weeks, and 59 fetuses presented with SVT after 28 weeks. The obtained findings were compared with corresponding parameters in control groups of 37 and 68 fetuses without cardiac rhythm disturbances at 20–27.6 weeks and 28–40 weeks of gestation, respectively.
Fetal cardiac contractile function was assessed using M-mode, the Fetal HQ program, Simpson’s method, and pulsed-wave Doppler evaluation of semilunar valve flow parameters. The overall fetal hemodynamic status was evaluated according to the cardiovascular profile score (J.C. Huhta, 2005; C.B. Falkensammer, J.C. Huhta, 2001).
Results. The study revealed distinct features of fetal cardiac function during the supraventricular tachyarrhythmia at different gestational ages. Across all gestational periods, SVT led to reduced transverse and longitudinal myocardial contractility; however, cardiac dysfunction was more pronounced when SVT developed before 27.6 weeks compared to onset after 28 weeks.
Before 27.6 weeks of gestation, left ventricular (LV) function was more significantly impaired, with marked reductions in both systolic and diastolic function, whereas after 28 weeks LV contractile alterations were minimal. In the right ventricle, before 27.6 weeks, diastolic function is impaired; after 28 weeks, systolic function is more significantly reduced.
Cardiac remodeling associated with SVT results in increase of atrial and central venous pressures, impaired hepatic venous outflow, development of hepatic congestion, heart failure, and progression to non-immune hydrops fetalis. The degree and severity of hydrops was significantly greater in fetuses with SVT onset before 27.6 weeks compared with those affected at 28–40 weeks of gestation (p < 0.001).
Conclusions. Fetal SVT at any gestational age leads to a reduction in myocardial contractile function; however, the earlier in gestation supraventricular tachycardia develops, the more severe the manifestations of cardiac failure.
About the Authors
N. E. YannaevaRussian Federation
Natalia E. Yannaeva – MD, PhD (Med.), researcher, ultrasound diagnostics doctor, National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov, Moscow
https://orcid.org/0009-0002-1049-0296
E. L. Bokerija
Russian Federation
Ekaterina L. Bokerija – MD, Doct. of Sci. (Med.), Leading Researcher, neonatologist, pediatric cardiologist, National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov;
Professor, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow
https://orcid.org/0000-0002-8898-9612
A. N. Sencha
Russian Federation
Aleksandr N. Sencha – M.D., Doct. of Sci. (Med.), Head of Radiology Division, National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov;
Professor of the Department of Ultrasound Diagnostics, Pirogov Russian National Research Medical University, Moscow
https://orcid.org/0000-0002-1188-8872
References
1. Jaeggi E., Öhman A. Fetal and Neonatal Arrhythmias. Clin. Perinatol. 2016; 43 (1): 99–112. https://doi.org/10.1016/j.clp.2015.11.007
2. Strasburger J.F., Eckstein G., Butler M. et al. Fetal Arrhythmia Diagnosis and Pharmacologic Management. Clin. Pharmacol. 2022; 62, Suppl. 1: S53–S66. https://doi.org/10.1002/jcph.2129
3. Detterich J.A., Pruetz J., Sklansky M.S. Color Mmode sonography for evaluation of fetal arrhythmias. J. Ultrasound Med. 2012; 31(10): 1681–1688. https://doi.org/0.7863/jum.2012.31.10.1681
4. Batra A.S., Silka M.J., Borquez A. et al. Pharmacological Management of Cardiac Arrhythmias in the Fetal and Neonatal Periods: A Scientific Statement From the American Heart Association: Endorsed by the Pediatric & Congenital Electrophysiology Society (PACES). American Heart Association Clinical Pharmacology Committee of the Council on Clinical Cardiology, Council on Basic Cardiovascular Sciences, Council on Cardiovascular and Stroke Nursing, Council on Genomic and Precision Medicine, and Council on Lifelong Congenital Heart Disease and Heart Health in the Young. Circulation. 2024; 149 (10): e937–e952. https://doi.org/10.1161/CIR. 0000000000001206
5. Donofrio M.T., MoonGrady A.J., Hornberger L.K. et al. Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. American Heart Association Adults With Congenital Heart Disease Joint Committee of the Council on Cardiovascular Disease in the Young and Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and Council on Cardiovascular and Stroke Nursing. Circulation. 2014; 129 (21): 2183–2242. https://doi.org/10.1161/01.cir.0000437597.44550.5d
6. Jaeggi E.T., Nii M. Fetal brady and tachyarrhythmias: new and accepted diagnostic and treatment methods. Semin. Fetal. Neonatal. Med. 2005; 10 (6): 504–514. https://doi.org/10.1016/j.siny.2005.08.003
7. Strasburger J.F. Prenatal diagnosis of fetal arrhythmias. Clin. Perinatol. 2005; 32 (4): 891–912, viii. https://doi.org/10.1016/j.clp.2005.09.011
8. Sridharan S., Sullivan I., Tomek V. et al. Flecainide versus digoxin for fetal supraventricular tachycardia: Comparison of two drug treatment protocols. J. Heart Rhythm. 2016; 13 (9): 1913–1919. https://doi.org/10.1016/j.hrthm.2016.03.023
9. Kleinman C.S., Nehgme R.A. Cardiac arrhythmias in the human fetus. Pediatr. Cardiol. 2004; 25 (3): 234–251. https://doi.org/10.1007/s002460030589x
10. Krapp M., Kohl T., Simpson J.M. et al. Review of diagnosis, treatment, and outcome of fetal atrial flutter compared with supraventricular tachycardia. Heart. 2003; 89 (8): 913–917. https://doi.org/10.1136/heart.89.8.913
11. van Engelen Maeno Y., Hirose A., Kanbe T., Hori D. Fetal arrhythmia: prenatal diagnosis and perinatal management. J. Obstet. Gynaecol. Res. 2009; 35 (4): 623–629. https://doi.org/10.1111/j.14470756.2009.01080.x
12. Simpson J.M., Sharland G.K. Fetal tachycardias: management and outcome of 127 consecutive cases. Heart. 1998; 79 (6): 576–581.
13. Hornberger L.K., Sahn D.J. Rhythm abnormalities of the fetus. Heart. 2007; 93 (10): 1294–300. https://doi.org/10.1136/hrt.2005.069369
14. Jaeggi E.T., Carvalho J.S., De Groot E. et al. Comparison of transplacental treatment of fetal supraventricular tachyarrhythmias with digoxin, flecainide, and sotalol: results of a nonrandomized multicenter study. Circulation. 2011; 124 (16): 1747–1754. https://doi.org/10.1161/CIRCULATIONAHA.111.026120
15. Srinivasan S., Strasburger J. Overview of fetal arrhythmias. Curr. Opin. Pediatr. 2008; 20 (5): 522–531. https://doi.org/10.1097/MOP. 0b013e32830f93ec
16. Paladini D., Chita S.K., Allan L.D. Prenatal measurement of cardiothoracic ratio in evaluation of heart disease. Arch. Dis. Child. 1990. 65: 20–23. https://doi.org/10.1136/adc.65.1_spec_no.20
17. Khalil A., Sotiriadis A., D’Antonio F. ISUOG Practice Guidelines: performance of thirdtrimester obstetric ultrasound scan. Ultrasound Obstet. Gynecol. 2024; 63 (1): 131–147. https://doi.org/10.1002/uog.27538
18. Huhta J.C. Fetal congestive heart failure. Semin. Fetal. Neonatal. Med. 2005; 10 (6): 542–552. https://doi.org/10.1016/j.siny.2005.08.005
19. Falkensammer C.B., Paul J., Huhta J.C. Fetal congestive heart failure: correlation of Teiindex and Cardiovascularscore. J. Perinat Med. 2001; 29 (5): 390–398. https://doi.org/10.1515/JPM.2001.055
20. DeVore G.R., Siassi B., Platt L.D. Fetal echocardiography. IV. Mmode assessment of ventricular size and contractility during the second and third trimesters of pregnancy in the normal fetus. Am. J. Obstet. Gynecol. 1984; 150 (8): 981–988. https://doi.org/10.1016/00029378(84)903958
21. Simpson J.M., Cook A. Repeatability of echocardiographic measurements in the human fetus. Ultrasound Obstet Gynecol. 2002; 20 (4): 332–339. https://doi.org/10.1046/j.14690705.2002.00799.x
22. Hsieh Y.Y., Chang F.C., Tsai H.D., Tsai C.H. Longitudinal survey of fetal ventricular ejection and shortening fraction throughout pregnancy. Ultrasound Obstet. Gynecol. 2000; 16 (1): 46–48. https://doi.org/10.1046/j.14690705.2000.00160.x
23. DeVore G.R., Klas B., Satou G., Sklansky M. Longitudinal Annular Systolic Displacement Compared to Global Strain in Normal Fetal Heart sand Those With Cardiac Abnormalities. J. Ultrasound Med. 2018; 37: 1159–1171. https://doi.org/10.1002/jum.14454
24. van Oostrum N.H.M., de Vet C.M., Clur S.B. et al. Fetal myocardial deformation measured with twodimensional speckletracking echocardiography: longitudinal prospective cohort study of 124 healthy fetuses. Ultrasound Obstet. Gynecol. 2022; 59 (5): 651–659. https://doi.org/10.1002/uog.24781
25. Hu W., Wang M., Bian J. et al. Evaluation of fetal cardiac morphology and function by fetal heart quantification technique in the normal second and third trimesters. Transl. Pediatr. 2024; 13 (7): 1106–1118. https://doi.org/10.21037/tp24123
26. Buryakova S.I., Medvedev M.V. Possibilities of applying speckle tracking echocardiography to assess fetal myocardial function. Part 2. Parameters to assess myocardial contractile function Prenatal Diagnosis. 2020; 19 (1): 9–15. (In Russian)
27. Harada K., Rice M.J., McDonald R.W. et al. Doppler echocardiographic evaluation of ventricular diastolic filling in fetuses with ductal constriction. Am. J. Cardiol. 1997; 79 (4): 442–446. https://doi.org/10.1016/s00029149(96)007837
28. Kenny J.F., Plappert T., Doubilet P. et al. Changes in intracardiac blood flow velocities and right and left ventricular stroke volumes with gestational age in the normal human fetus: a prospective Doppler echocardiographic study. Circulation. 1986; 74 (6): 1208–1216. https://doi.org/10.1161/01.cir.74.6.1208
29. Rasanen J., Wood D.C., Weiner S. et al. Role of the pulmonary circulation in the distribution of human fetal cardiac output during the second half of pregnancy. Circulation. 1996; 94 (5): 1068–1073. https://doi.org/10.1161/01.cir.94.5.1068
30. Eckersley L., Hornberger L.K. Cardiac function and dysfunction in the fetus. Echocardiography. 2017; 34 (12): 1776–1787. https://doi.org/10.1111/echo.13654
31. Mielke G., Benda N. Cardiac output and central distribution of blood flow in the human fetus. Circulation. 2001; 103 (12): 1662–1668. https://doi.org/10.1161/01.cir.103.12.1662
32. Messing B., Gilboa Y., Lipschuetz M. et al. Fetal tricuspid annular plane systolic excursion (fTAPSE): evaluation of fetal right heart systolic function with conventional Mmode ultrasound and spatiotemporal image correlation (STIC) Mmode. Ultrasound Obstet. Gynecol. 2013; 42 (2): 182–188. https://doi.org/10.1002/uog.12375
33. Nakai Y., Miyazaki. Y., Matsuoka Y. et al. Pulsatile umbilical venous flow and its clinical significance. Br. J. Obstet. Gynaecol. 1992; 99 (12): 977–980. https://doi.org/10.1111/j.14710528.1992.tb13701.x
34. Nakai Y., Imanaka M., Nishio J., Ogita S. Umbilical cord venous pulsation in normal fetuses and its incidence after 13 weeks of gestation. Ultrasound Med. Biol. 1995; 21 (4): 443–446. https://doi.org/10.1016/03015629(94)00150c
35. Rizzo G., Arduini D., Romanini C. Doppler echocardiographic assessment of fetal cardiac function. Ultrasound Obstet. Gynecol. 1992; 2 (6): 434–445. https://doi.org/10.1046/j.14690705.1992. 02060434.x
36. Patel D., Cuneo B., Viesca R. et al. Digoxin for the treatment of fetal congestive heart failure with sinus rhythm assessed by cardiovascular profile score. J. Matern. Fetal. Neonatal. Med. 2008; 21 (7): 477–482. https://doi.org/10.1080/ 14767050802073790
37. Hofstaetter C., Hansmann M., EikNes S.H. et al. A cardiovascular profile score in the surveillance of fetal hydrops. J. Matern. Fetal. Neonatal. Med. 2006; 19 (7): 407–413. https://doi.org/10.1080/14767050600682446
38. Wieczorek A., HernandezRobles J., Ewing L., Leshko J., Luther S., Huhta J. Prediction of outcome of fetal congenital heart disease using a cardiovascular profile score. Ultrasound Obstet. Gynecol. 2008; 31 (3): 284–288. https://doi.org/10.1002/uog.5177
Supplementary files
Review
For citations:
Yannaeva N.E., Bokerija E.L., Sencha A.N. Comparative characteristics of fetal cardiac function and hemodynamics based on echocardiographic findings in cases of supraventricular tachycardia that developed before 27.6 weeks of gestation and between 28 and 40 weeks of pregnancy. Ultrasound & Functional Diagnostics. 2025;31(4):23-42. (In Russ.) https://doi.org/10.24835/1607-0771-341









