Preview

Ультразвуковая и функциональная диагностика

Расширенный поиск

Факторы, оказывающие влияние на результаты ультразвуковой эластометрии печени

https://doi.org/10.24835/1607-0771-2021-4-9-29

Аннотация

Факторы, которые оказывают влияние на результаты ультразвуковой эластометрии, имеют большое значение при интерпретации данных в рамках диагностики фиброза печени. При использовании ультразвуковой эластометрии в других целях (например, при прогнозировании сердечных событий у пациентов с правосторонней сердечной недостаточностью, мониторинге пациентов с синдромом синусоидальной обструкции печени, мониторинге краткосрочных и долгосрочных результатов ангиопластики у пациентов с синдромом Бадда-Киари) учет факторов, искажающих результаты эластометрии, также необходим. Факторы, искажающие результаты эластометрии, связаны с методикой исследования, оборудованием, артефактами, особенностями состояния организма и внешними воздействиями. Многие из них носят универсальный характер независимо от используемого вида количественной ультразвуковой эластографии. Наличие факторов, искажающих результаты эластометрии, следует отражать в протоколе эластографического исследования печени и оценивать при написании заключения, вплоть до указания о невозможности интерпретации полученных результатов.

Об авторах

С. И. Пиманов
УО “Витебский государственный медицинский университет”
Россия


М. Д. Митькова
ФГБОУ ДПО “Российская медицинская академия непрерывного профессионального образования” Министерства здравоохранения Российской Федерации
Россия


В. В. Митьков
ФГБОУ ДПО “Российская медицинская академия непрерывного профессионального образования” Министерства здравоохранения Российской Федерации
Россия


Список литературы

1. Lim J.K., Flamm S.L., Singh S., Falck-Ytter Y.T.; Clinical Guidelines Committee of the American Gastroenterological Association. American Gastroenterological Association Institute Guideline on the role of elastography in the evaluation of liver fibrosis. Gastroenterology. 2017; 152 (6): 1536-1543. https://doi.org/10.10537j.gastro.2017.03.017

2. Ozturk A., Olson M.C., Samir A.E., Venkatesh S.K. Liver fibrosis assessment: MR and US elastography. Abdom Radiol (NY). 2021. Online ahead of print. https://doi.org/10.1007/s00261-021-03269-4

3. Митьков В.В., Митькова М.Д. Ультразвуковая эластография сдвиговой волной. Ультразвуковая и функциональная диагностика. 2015; 2: 94-108.

4. Dietrich C.F., Bamber J., Berzigotti A., Bota S., Cantisani V., Castera L., Cosgrove D., Ferraioli G., Friedrich-Rust M., Gilja O.H., Goertz R.S., Karlas T., de Knegt R., de Ledinghen V., Piscaglia F., Procopet B., Saftoiu A., Sidhu P.S., Sporea I., Thiele M. EFSUMB guidelines and recommendations on the clinical use of liver ultrasound elastography, update 2017 (long version). Ultraschall Med. 2017; 38 (4): e16-e47. https://doi.org/10.1055/s-0043-103952

5. Cosgrove D., Piscaglia F., Bamber J., Bojunga J., Correas J.M., Gilja O.H., Klauser A.S., Sporea I., Calliada F., Cantisani V., D’Onofrio M., Drakonaki E.E., Fink M., Friedrich-Rust M., Fromageau J., Havre R.F., Jenssen C., Ohlinger R., Saftoiu A., Schaefer F., Dietrich C.F. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: Clinical applications. Ultraschall Med. 2013; 34 (3): 238-253. https://doi.org/10.1055/s-0033-1335375

6. Acar S., Millar E., Mitkova M., Mitkov V. Value of ultrasound shear wave elastography in the diagnosis of adenomyosis. Ultrasound. 2016; 24 (4): 205213. https://doi.org/10.1177/1742271x16673677

7. Кадрев А.В., Митькова М.Д., Камалов Д.М., Данилова Н.В., Сорокин Н.И., Камалов А.А., Митьков В.В. Диагностика и оценка морфологической значимости рака предстательной железы при использовании относительных параметров количественного анализа ультразвукового исследования с контрастным усилением: предварительные результаты. Ультразвуковая и функциональная диагностика. 2020; 4: 13-33. https://doi.org/10.24835/1607-0771-2020-4-13-33

8. Митьков В.В., Чубарова К.А., Заболотская Н.В., Митькова М.Д., Яурова Н.В. Эластография сдвиговой волной в мультипараметрической ультразвуковой диагностике злокачественных опухолей молочной железы различных размеров. Ультразвуковая и функциональная диагностика. 2015; 2: 9-18.

9. Feng J.C., Li J., Wu X.W., Peng X.Y. Diagnostic accuracy of SuperSonic shear imaging for staging of liver fibrosis: a meta-analysis. J Ultrasound Med. 2016; 35 (2): 329-339. https://doi.org/10.7863/ultra.15.03032

10. Jiang T., Tian G., Zhao Q., Kong D., Cheng C., Zhong L., Li L. Diagnostic accuracy of 2D-shear wave elastography for liver fibrosis severity: a meta-analysis. PLoS One. 2016; 11 (6): e0157219. https://doi.org/10.1371/journal.pone.0157219

11. Li C., Zhang C., Li J., Huo H., Song D. Diagnostic accuracy of real-time shear wave elastography for staging of liver fibrosis: a meta-analysis. Med. Sci. Monit. 2016; 22: 1349-1359. https://doi.org/10.12659/msm.895662

12. Shan Q.Y., Liu B.X., Tian W.S., Wang W., Zhou L.Y., Wang Y., Xie X.Y. Elastography of shear wave speed imaging for the evaluation of liver fibrosis: a meta-analysis. Hepatol. Res. 2016; 46 (12): 1203-1213. https://doi.org/10.1111/hepr.12669

13. Herrmann E., de Ledinghen V., Cassinotto C., Chu W.C., Leung V.Y., Ferraioli G., Filice C., Castera L., Vilgrain V., Ronot M., Dumortier J., Guibal A., Pol S., Trebicka J., Jansen C., Strassburg C., Zheng R., Zheng J., Francque S., Vanwolleghem T., Vonghia L., Manesis E.K., Zoumpoulis P., Sporea I., Thiele M., Krag A., Cohen-Bacrie C., Criton A., Gay J., Deffieux T., Friedrich-Rust M. Assessment of biopsy-proven liver fibrosis by two-dimensional shear wave elastography: an individual patient data-based meta-analysis. Hepatology. 2018; 67 (1): 260-272. https://doi.org/10.1002/hep.29179

14. Zhang W., Zhu Y., Zhang C., Ran H. Diagnostic accuracy of 2-dimensional shear wave elastography for the staging of liver fibrosis: a meta-analysis. J. Ultrasound Med. 2019; 38 (3): 733-740. https://doi.org/10.1002/jum.14760

15. Fu J., Wu B., Wu H., Lin F., Deng W. Accuracy of real-time shear wave elastography in staging hepatic fibrosis: a meta-analysis. BMC Med. Imaging. 2020; 20 (1): 16. https://doi.org/10.1186/s12880-020-0414-5

16. Катрич А.Н., Охотина А.В., Шамахян К.А., Рябин Н.С. Ультразвуковая эластография сдвиговой волной в диагностике стадии фиброза печени. Ультразвуковая и функциональная диагностика. 2017; 3: 10-21.

17. Dhyani M., Grajo J.R., Bhan A.K., Corey K., Chung R., Samir A.E. Validation of shear wave elastography cutoff values on the Supersonic Aixplorer for practical clinical use in liver fibrosis staging. Ultrasound Med. Biol. 2017; 43 (6): 11251133. https://doi.org/10.1016/j.ultrasmedbio.2017.01.022

18. Goodman Z.D. Grading and staging systems for inflammation and fibrosis in chronic liver diseases. J. Hepatol. 2007; 47 (4): 598-607. https://doi.org/10.1016/j.jhep.2007.07.006

19. Barr R.G., Ferraioli G., Palmeri M.L., Goodman Z.D., Garcia-Tsao G., Rubin J., Garra B., Myers R.P., Wilson S.R., Rubens D., Levine D. Elastography assessment of liver fibrosis: Society of Radiologists in Ultrasound consensus conference statement. Radiology. 2015; 276 (3): 845-861. https://doi.org/10.1148/radiol.2015150619

20. Myers R.P., Fong A., Shaheen A.A. Utilization rates, complications and costs of percutaneous liver biopsy: a population-based study including 4275 biopsies. Liver Int. 2008; 28 (5): 705-712. https://doi.org/10.1111/j.1478-3231.2008.01691.x

21. Barr R.G. Shear wave liver elastography. Abdom. Radiol. (NY). 2018; 43 (4): 800-807. https://doi.org/10.1007/s00261-017-1375-1

22. Yao T.T., Pan J., Qian J.D., Cheng H., Wang Y., Wang G.Q. Shear wave elastography may be sensitive and more precise than transient elastography in predicting significant fibrosis. World J. Clin. Cases. 2020; 8 (17): 3730-3742. https://doi.org/10.12998/wjcc.v8.i17.3730

23. Barr R.G., Wilson S.R., Rubens D., Garcia-Tsao G., Ferraioli G. Update to the Society of Radiologists in Ultrasound liver elastography consensus statement. Radiology. 2020; 296 (2): 263-274. https://doi.org/10.1148/radiol.2020192437

24. Ferraioli G., Filice C., Castera L., Choi B.I., Sporea I., Wilson S.R., Cosgrove D., Dietrich C.F., Amy D., Bamber J.C., Barr R., Chou Y.H., Ding H., Farrokh A., Friedrich-Rust M., Hall T.J., Nakashima K., Nightingale K.R., Palmeri M.L., Schafer F., Shiina T., Suzuki S., Kudo M. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 3: liver. Ultrasound Med. Biol. 2015; 41 (5): 1161-1179. https://doi.org/10.1016/j.ultrasmedbio.2015.03.007

25. Ferraioli G., Wong V.W., Castera L., Berzigotti A., Sporea I., Dietrich C.F., Choi B.I., Wilson S.R., Kudo M., Barr R.G. Liver ultrasound elastography: an update to the World Federation for Ultrasound in Medicine and Biology guidelines and recommendations. Ultrasound Med. Biol. 2018; 44 (12): 2419-2440. https://doi.org/10.1016/j.ultrasmedbio.2018.07.008

26. Ferraioli G. Review of liver elastography guidelines. J. Ultrasound Med. 2019; 38 (1): 9-14. https://doi.org/10.1002/jum.14856

27. Baldea V., Bende F., Popescu A., Sirli R., Sporea I.Comparative study between two 2D-shear waves elastography techniques for the non-invasive assessment of liver fibrosis in patients with chronic hepatitis C virus (HCV) infection. Med. Ultrason. 2021; 23 (3): 257-264. https://doi.org/10.11152/mu-2863

28. Petzold G., Grieme B., Bremer S.C.B., Knoop R.F., Goetze R.G., Ellenrieder V., Kunsch S., Neesse A. Prospective comparison of 2D-shearwave elastography in both liver lobes in healthy subjects and in patients with chronic liver disease. Scand. J. Gastroenterol. 2019; 54 (9): 1138-1145. https://doi.org/10.1080/00365521.2019.1653961

29. Ling W., Lu Q., Quan J., Ma L., Luo Y. Assessment of impact factors on shear wave based liver stiffness measurement. Eur. J. Radiol. 2013; 82 (2): 335-341. https://doi.org/10.1016/j.ejrad.2012.10.004

30. Yun M.H., Seo Y.S., Kang H.S., Lee K.G., Kim J.H., An H., Yim H.J., Keum B., Jeen Y.T., Lee H.S., Chun H.J., Um S.H., Kim C.D., Ryu H.S. The effect of the respiratory cycle on liver stiffness values as measured by transient elastography. J. Viral Hepat. 2011; 18 (9): 631-636. https://doi.org/10.1111/j.1365-2893.2010.01376.x

31. Naganuma H., Ishida H., Uno A., Nagai H., Kuroda H., Ogawa M. Diagnostic problems in two-dimensional shear wave elastography of the liver. World J. Radiol. 2020; 12 (5): 76-86. https://doi.org/10.4329/wjr.v12.i5.76

32. Bouchet P., Gennisson J.L., Podda A., Alilet M., Carrie M., Aubry S. Artifacts and technical restrictions in 2D shear wave elastography. Ultraschall Med. 2020; 41 (3): 267-277. https://doi.org/10.1055/a-0805-1099

33. Srinivasa Babu A., Wells M.L., Teytelboym O.M., Mackey J.E., Miller F.H., Yeh B.M., Ehman R.L., Venkatesh S.K. Elastography in chronic liver disease: modalities, techniques, limitations, and future directions. Radiographics. 2016; 36 (7): 1987-2006. https://doi.org/10.1148/rg.2016160042

34. Zelesco M., Abbott S., O’Hara S. Pitfalls and sources of variability in two dimensional shear wave elastography of the liver: an overview. Sonography. 2018; 5 (1): 20-28. https://doi.org/10.1002/sono.12132

35. Dubinsky T.J., Shah H.U., Erpelding T.N., Sannananja B., Sonneborn R., Zhang M. Propagation imaging in the demonstration of common shear wave artifacts. J. Ultrasound Med. 2019; 38 (6): 1611-1616. https://doi.org/10.1002/jum.14840

36. Park S.H., Kim S.Y., Suh C.H., Lee S.S., Kim K.W., Lee S.J., Lee M.G. What we need to know when performing and interpreting US elastography. Clin. Mol. Hepatol. 2016; 22 (3): 406-414. https://doi.org/10.3350/cmh.2016.0106

37. Goertz R.S., Egger C., Neurath M.F., Strobel D. Impact of food intake, ultrasound transducer, breathing maneuvers and body position on acoustic radiation force impulse (ARFI) elastometry of the liver. Ultraschall Med. 2012; 33 (4): 380-385. https://doi.org/10.1055/s-0032-1312816

38. Dong Y., Sirli R., Ferraioli G., Sporea I., Chiorean L., Cui X., Fan M., Wang W.P., Gilja O.H., Sidhu P.S., Dietrich C.F. Shear wave elastography of the liver - review on normal values. Z. Gastroenterol. 2017; 55 (2): 153-166. https://doi.org/10.1055/s-0042-117226

39. Kot B.C., Zhang Z.J., Lee A.W., Leung V.Y., Fu S.N. Elastic modulus of muscle and tendon with shear wave ultrasound elastography: variations with different technical settings. PLoS One. 2012; 7 (8): e44348. https://doi.org/10.1371/journal.pone.0044348

40. Procopet B., Berzigotti A., Abraldes J.G., Turon F., Hernandez-Gea V., Garcfa-Pagan J.C., Bosch J. Real-time shear-wave elastography: applicability, reliability and accuracy for clinically significant portal hypertension. J. Hepatol. 2015; 62 (5): 10681075. https://doi.org/10.1016Zj.jhep.2014.12.007

41. Lim S., Kim S.H., Kim Y., Cho Y.S., Kim T.Y., Jeong W.K., Sohn J.H. Coefficient of variance as quality criterion for evaluation of advanced hepatic fibrosis using 2D shear-wave elastography. J. Ultrasound Med. 2018; 37 (2): 355-362. https://doi.org/10.1002/jum.14341

42. Sporea I., Friedrich-Rust M., Gilja O.H., Bota S., §irli R. Liver elastography EFSUMB Course Book. 2nd ed. https://efsumb.org/wp-content/uploads/2020/12/ECBCh03_liver_Elastography_FREE.pdf (2018, accessed 12 December 2021).

43. Пиманов С.И., Сычев О.Ю., Данилова О.И. Воспроизводимость результатов ультразвуковой эластографии сдвиговой волной. Лучевая диагностика и терапия. 2019; 1 (S): 151-152.

44. Сычев О.Ю., Данилова О.И., Михайлова Н.А., Вергасова Е.В., Пиманов С.И. Вариабельность результатов ультразвуковой эластографии печени сдвиговой волной при многократных измерениях. Ультразвуковая и функциональная диагностика. 2019; 3 (Приложение 2): S86.

45. Ferraioli G., Barr R.G. Ultrasound liver elastography beyond liver fibrosis assessment. World J. Gastroenterol. 2020; 26 (24): 3413-3420. https://doi.org/10.3748/wjg.v26.i24.3413

46. Arena U., Vizzutti F., Corti G., Ambu S., Stasi C., Bresci S., Moscarella S., Boddi V., Petrarca A., Laffi G., Marra F., Pinzani M. Acute viral hepatitis increases liver stiffness values measured by transient elastography. Hepatology. 2008; 47 (2): 380-384. https://doi.org/10.1002/hep.22007

47. Kim S.U., Kim D.Y., Park J.Y., Lee J.H., Ahn S.H., Kim J.K., Paik Y.H., Lee K.S., Chon C.Y., Choi E.H., Song K.J., Park Y.N., Han K.H. How can we enhance the performance of liver stiffness measurement using FibroScan in diagnosing liver cirrhosis in patients with chronic hepatitis B? J. Clin. Gastroenterol. 2010; 44 (1): 66-71. https://doi.org/10.1097/MCG.0b013e3181a95c7f

48. Mueller S., Englert S., Seitz H.K., Badea R.I., Erhardt A., Bozaari B., Beaugrand M., Lupsor-Platon M. Inflammation-adapted liver stiffness values for improved fibrosis staging in patients with hepatitis C virus and alcoholic liver disease. Liver Int. 2015; 35 (12): 2514-2521. https://doi.org/10.1111/liv.12904

49. Wu S., Yang Z., Zhou J., Zeng N., He Z., Zhan S., Jia J., You H. Systematic review: diagnostic accuracy of non-invasive tests for staging liver fibrosis in autoimmune hepatitis. Hepatol.Int. 2019; 13 (1): 91-101. https://doi.org/10.1007/s12072-018-9907-5

50. Patel K., Sebastiani G. Limitations of non-invasive tests for assessment of liver fibrosis. JHEP Rep. 2020; 2 (2): 100067. https://doi.org/10.1016/j.jhepr.2020.100067

51. Zeng J., Huang Z.P., Zheng J., Wu T., Zheng R.Q. Non-invasive assessment of liver fibrosis using two-dimensional shear wave elastography in patients with autoimmune liver diseases. World J. Gastroenterol. 2017; 23 (26): 4839-4846. https://doi.org/10.3748/wjg.v23.i26.4839

52. Yada N., Sakurai T., Minami T., Arizumi T., Takita M., Hagiwara S., Ida H., Ueshima K., Nishida N., Kudo M. Influence of liver inflammation on liver stiffness measurement in patients with autoimmune hepatitis evaluation by combinational elastography. Oncology. 2017; 92 (Suppl. 1): 10-15. https://doi.org/10.1159/000451011

53. Mendoza Y.P., Rodrigues S.G., Delgado M.G., Murgia G., Lange N.F., Schropp J., Montani M., Dufour J.F., Berzigotti A. Inflammatory activity affects the accuracy of liver stiffness measurement by transient elastography but not by two-dimensional shear wave elastography in non-alcoholic fatty liver disease. Liver Int. 2022; 42 (1): 102111. https://doi.org/10.1111/liv.15116

54. Zeng J., Zheng J., Jin J.Y., Mao Y.J., Guo H.Y., Lu M.D., Zheng H.R., Zheng R.Q. Shear wave elastography for liver fibrosis in chronic hepatitis B: adapting the cut-offs to alanine aminotransferase levels improves accuracy. Eur. Radiol. 2019; 29 (2): 857-865. https://doi.org/10.1007/s00330-018-5621-x

55. Singh S., Facciorusso A., Loomba R., Falck-Ytter Y.T. Magnitude and kinetics of decrease in liver stiffness after antiviral therapy in patients with chronic hepatitis C: a systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2018; 16 (1): 27-38.e4. https://doi.org/10.1016Zj.cgh.2017.04.038

56. Andersen E.S., Moessner B.K., Christensen P.B., Kjær M., Krarup H., Lillevang S., Weis N. Lower liver stiffness in patients with sustained virological response 4 years after treatment for chronic hepatitis C. Eur. J. Gastroenterol Hepatol. 2011; 23 (1): 41-44. https://doi.org/10.1097/MEG.0b013e328341b891

57. Huang R., Rao H., Yang M., Gao Y., Wang J., Jin Q., Ma D., Wei L. Noninvasive measurements predict liver fibrosis well in hepatitis C virus patients after direct-acting antiviral therapy. Dig. Dis. Sci. 2020; 65 (5): 1491-1500. https://doi.org/10.1007/s10620-019-05886-y

58. Karlas T.F., Pfrepper C., Rosendahl J., Benckert C., Wittekind C., Jonas S., Moessner J., Troltzsch M., Tillmann H.L., Berg T., Keim V., Wiegand J. Acoustic radiation force impulse (ARFI) elastography in acute liver failure: necrosis mimics cirrhosis. Z. Gastroenterol. 2011; 49 (4): 443-448. https://doi.org/10.1055/s-0029-1245690

59. Wong G.L., Kwok R., Wong V.W. Huge adrenal hemangioma: a rare cause of deceivingly high liver stiffness measurement by transient elastography. Clin. Gastroenterol. Hepatol. 2015; 13 (4): e37-e38. https://doi.org/10.1016/j.cgh.2014.11.009

60. Loustaud-Ratti V.R., Cypierre A., Rousseau A., Yagoubi F., Abraham J., Fauchais A.L., Carrier P., Lefebvre A., Bordessoule D., Vidal E., Sautereau D., Jaccard A. Non-invasive detection of hepatic amyloidosis: FibroScan, a new tool. Amyloid. 2011; 18 (1): 19-24. https://doi.org/10.3109/13506129.2010.543443

61. Lanzi A., Gianstefani A., Mirarchi M.G., Pini P., Conti F., Bolondi L. Liver AL amyloidosis as a possible cause of high liver stiffness values. Eur. J. Gastroenterol. Hepatol. 2010; 22 (7): 895-897. https://doi.org/10.1097/MEG.0b013e3283309d5b

62. Millonig G., Reimann F.M., Friedrich S., Fonouni H., Mehrabi A., Buchler M.W., Seitz H.K., Mueller S. Extrahepatic cholestasis increases liver stiffness (FibroScan) irrespective of fibrosis. Hepatology. 2008; 48 (5): 1718-1723. https://doi.org/10.1002/hep.22577

63. Guo H., Liao M., Jin J., Zeng J., Li S., Schroeder D.R., Zheng J., Zheng R., Chen S. How intrahepatic cholestasis affects liver stiffness in patients with chronic hepatitis B: a study of 1197 patients with liver biopsy. Eur. Radiol. 2020; 30 (2): 10961104. https://doi.org/10.1007/s00330-019-06451-x

64. Soloveva A., Kobalava Z., Fudim M., Ambrosy A.P., Villevalde S., Bayarsaikhan M., Garmash I., Naumenko M. Relationship of liver stiffness with congestion in patients presenting with acute decompensated heart failure. J. Card. Fail. 2019; 25 (3): 176-187. https://doi.org/10.1016/j.cardfail.2019.01.020

65. Hopper I., Kemp W., Porapakkham P., Sata Y., Condon E., Skiba M., Farber L., Porapakkham P., Williams T.J., Menahem S., Roberts S., Krum H. Impact of heart failure and changes to volume status on liver stiffness: non-invasive assessment using transient elastography. Eur. J. Heart Fail. 2012; 14 (6): 621-627. https://doi.org/10.1093/eurjhf/hfs044

66. Chimoriya R., Piya M.K., Simmons D., Ahlenstiel G., Ho V. The use of two-dimensional shear wave elastography in people with obesity for the assessment of liver fibrosis in non-alcoholic fatty liver disease. J. Clin. Med. 2020; 10 (1): 95. https://doi.org/10.3390/jcm10010095

67. Bazerbachi F., Haffar S., Wang Z., Cabezas J., Arias-Loste M.T., Crespo J., Darwish-Murad S., Ikram M.A., Olynyk J.K., Gan E., Petta S., Berzuini A., Prati D., de Ledinghen V., Wong V.W., Del Poggio P., Chavez-Tapia N.C., Chen Y.P., Cheng P.N., Yuen M.F., Das K., Chowdhury A., Caballeria L., Fabrellas N., Gines P., Kumar M., Sarin S.K., Conti F., Andreone P., Sirli R., Cortez-Pinto H., Carvalhana S., Sugihara T., Kim S.U., Parikh P., Chayama K., Corpechot C., Kim K.M., Papatheodoridis G., Alsebaey A., Kamath P.S., Murad M.H., Watt K.D. Range of normal liver stiffness and factors associated with increased stiffness measurements in apparently healthy individuals. Clin. Gastroenterol. Hepatol. 2019; 17 (1): 54-64.e1. https://doi.org/10.1016/j.cgh.2018.08.069

68. Lee S.M., Lee J.M., Kang H.J., Yang H.K., Yoon J.H., Chang W., An S.J., Lee K.B., Baek S.Y. Liver fibrosis staging with a new 2D-shear wave elastography using comb-push technique: applicability, reproducibility, and diagnostic performance. PLoS One. 2017; 12 (5): e0177264. https://doi.org/10.1371/journal.pone.0177264

69. Ammon F.J., Kohlhaas A., Elshaarawy O., Mueller J., Bruckner T., Sohn C., Fluhr G., Fluhr H., Mueller S. Liver stiffness reversibly increases during pregnancy and independently predicts preeclampsia. World J. Gastroenterol. 2018; 24 (38): 4393-4402. https://doi.org/10.3748/wjg.v24.i38.4393

70. Stenberg Ribeiro M., Hagstrom H., Stal P., Ajne G. Transient liver elastography in normal pregnancy - a longitudinal cohort study. Scand. J. Gastroenterol. 2019; 54 (6): 761-765. https://doi.org/10.1080/00365521.2019.1629007

71. Piecha F., Peccerella T., Bruckner T., Seitz H.K., Rausch V., Mueller S. Arterial pressure suffices to increase liver stiffness. Am. J. Physiol. Gastrointest. Liver Physiol. 2016; 311 (5): G945-G953. https://doi.org/10.1152/ajpgi.00399.2015

72. Zjacic Puljiz D., Delic Jukic I.K., Puljiz M., Vicelic Cutura L., Jercic Martinic-Ceza I., Bozic D., Podrug K., Puljiz Z. Which factors influence liver stiffness measured by real-time two dimensional shear wave elastography in patients on maintenance hemodialysis? Croat. Med. J. 2021; 62 (1): 34-43. https://doi.org/10.3325/cmj.2021.62.34

73. Piecha F., Mandorfer M., Peccerella T., Ozga A.K., Poth T., Vonbank A., Seitz H.K., Rausch V., Reiberger T., Mueller S. Pharmacological decrease of liver stiffness is pressure-related and predicts long-term clinical outcome. Am. J. Physiol. Gastrointest. Liver Physiol. 2018; 315 (4): G484-G494. https://doi.org/10.1152/ajpgi.00392.2017

74. Taraldsen V., Tomasgard S., Rudlang M., Gilja O., Vesterhus M., Mjelle A. Point shear wave elastography and the effect of physical exercise, alcohol consumption, and respiration in healthy adults. Ultrasound Int. Open. 2020; 6 (3): E54-E61. https://doi.org/10.1055/a-1298-9642

75. Horster S., Mandel P., Zachoval R., Clevert D.A.Comparing acoustic radiation force impulse imaging to transient elastography to assess liver stiffness in healthy volunteers with and without valsalva manoeuvre. Clin. Hemorheol. Microcirc. 2010; 46 (2-3): 159-168. https://doi.org/10.3233/ch-2010-1342

76. Choi S.Y., Jeong W.K., Kim Y., Kim J., Kim T.Y., Sohn J.H. Shear-wave elastography: a noninvasive tool for monitoring changing hepatic venous pressure gradients in patients with cirrhosis. Radiology. 2014; 273 (3): 917-926. https://doi.org/10.1148/radiol.14140008

77. Frankova S., Lunova M., Gottfriedova H., Senkerikova R., Neroldova M., Kovac J., Kieslichova E., Lanska V., Urbanek P., Spicak J., Jirsa M., Sperl J. Liver stiffness measured by two-dimensional shear-wave elastography predicts hepatic vein pressure gradient at high values in liver transplant candidates with advanced liver cirrho- sis. PLoS One. 2021; 16 (1): e0244934. https://doi.org/10.1371/journal.pone.0244934

78. Mederacke I., Wursthorn K., Kirschner J., Rifai K., Manns M.P., Wedemeyer H., Bahr M.J. Food intake increases liver stiffness in patients with chronic or resolved hepatitis C virus infection. Liver Int. 2009; 29 (10): 1500-1506. https://doi.org/10.1111/j.1478-3231.2009.02100.x

79. Arena U., Lupsor Platon M., Stasi C., Moscarella S., Assarat A., Bedogni G., Piazzolla V., Badea R., Laffi G., Marra F., Mangia A., Pinzani M. Liver stiffness is influenced by a standardized meal in patients with chronic hepatitis C virus at different stages of fibrotic evolution. Hepatology. 2013; 58 (1): 65-72. https://doi.org/10.1002/hep.26343

80. Petzold G., Porsche M., Ellenrieder V., Kunsch S., Neesse A. Impact of food intake on liver stiffness determined by 2-D shear wave elastography: prospective interventional study in 100 healthy patients. Ultrasound Med. Biol. 2019; 45 (2): 402410. https://doi.org/10.1016Zj.ultrasmedbio.2018.09.021

81. Kjargaard M., Thiele M., Jansen C., Stahr Madsen B., Gortzen J., Strassburg C., Trebicka J., Krag A. High risk of misinterpreting liver and spleen stiffness using 2D shear-wave and transient elastography after a moderate or high calorie meal. PLoS One. 2017; 12 (4): e0173992. https://doi.org/10.1371/journal.pone.0173992

82. Berzigotti A., De Gottardi A., Vukotic R., Siramolpiwat S., Abraldes J.G., Garcia-Pagan J.C., Bosch J. Effect of meal ingestion on liver stiffness in patients with cirrhosis and portal hypertension. PLoS One. 2013; 8 (3): e58742. https://doi.org/10.1371/journal.pone.0058742

83. Alvarez D., Orozco F., Mella J.M., Anders M., Antinucci F., Mastai R. Meal ingestion markedly increases liver stiffness suggesting the need for liver stiffness determination in fasting conditions. Gastroenterol. Hepatol. 2015; 38 (7): 431-435. https://doi.org/10.1016/j.gastrohep.2015.01.009

84. Lee J., Lee R., Erpelding T., Siddoway R.L., Gao J. The effect of water intake on ultrasound tissue characteristics and hemodynamics of adult livers. Clin. Exp. Hepatol. 2021; 7 (2): 223-230. https://doi.org/10.5114/ceh.2021.107068

85. Mikolasevic I., Domislovic V., Filipec Kanizaj T., Radic-Kristo D., Krznaric Z., Milovanovic T., Juric T., Klapan M., Skenderevic N., Delija B., Stevanovic T., Mijic A., Lukic A., Stimac D. Relationship between coffee consumption, sleep duration and smoking status with elastographic parameters of liver steatosis and fibrosis; controlled attenuation parameter and liver stiffness measurements.Int. J. Clin. Pract. 2021; 75 (3): e13770. https://doi.org/10.1111/ijcp.13770

86. Danielsen K.V., Hove J.D., Nabilou P., Yin M., Chen J., Zhao M., Kallemose T., Teisner A.S., Siebner H.R., Ehman R.L., Moller S., Bendtsen F. Using MR elastography to assess portal hypertension and response to beta-blockers in patients with cirrhosis. Liver Int. 2021; 41 (9): 2149-2158. https://doi.org/10.1111/liv.14981

87. Kim H.Y., So Y.H., Kim W., Ahn D.W., Jung Y.J., Woo H., Kim D., Kim M.Y., Baik S.K. Non-invasive response prediction in prophylactic carvedilol therapy for cirrhotic patients with esophageal varices. J. Hepatol. 2019; 70 (3): 412-422. https://doi.Org/10.1016/j.jhep.2018.10.018

88. Reiberger T., Ferlitsch A., Payer B.A., Pinter M., Homoncik M., Peck-Radosavljevic M.; Vienna Hepatic Hemodynamic Lab. Non-selective p-blockers improve the correlation of liver stiffness and portal pressure in advanced cirrhosis. J. Gastroenterol. 2012; 47 (5): 561-568. https://doi.org/10.1007/s00535-011-0517-4

89. Fang C., Sidhu P.S. Ultrasound-based liver elastography: current results and future perspectives. Abdom. Radiol. (NY). 2020; 45 (11): 3463-3472. https://doi.org/10.1007/s00261-020-02717-x


Рецензия

Для цитирования:


Пиманов С.И., Митькова М.Д., Митьков В.В. Факторы, оказывающие влияние на результаты ультразвуковой эластометрии печени. Ультразвуковая и функциональная диагностика. 2021;(4):9-29. https://doi.org/10.24835/1607-0771-2021-4-9-29

For citation:


Pimanov S.I., Mitkova M.D., Mitkov V.V. Confounding factors in ultrasound liver elastography. Ultrasound & Functional Diagnostics. 2021;(4):9-29. (In Russ.) https://doi.org/10.24835/1607-0771-2021-4-9-29

Просмотров: 345


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1607-0771 (Print)
ISSN 2408-9494 (Online)